首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 3,3-sigmatropic rearrangement in the M of phenyl allenylmethyl ether is proposed for the observed losses of CO, C2H4, and CH3. Direct cyclization in the M also leads to the [M?CH3] ion. The presence of sulfur as the heteroatom in phenyl allenylmethyl sulfide does not significantly influence the occurrence of Claisen rearrangement. Ortho interaction of the nitro group with the allenyl double bond in the side chain leads to characteristic fragment ions in 2-nitrophenyl allenylmethyl ether. Linked scans, high-resolution mass spectrometry, collision-activated dissociation-B/E linked-scan spectra, and D-labeling have been employed to support the proposed mechanisms and ion structures.  相似文献   

2.
The title compounds are diastereoisomers with antipodean axial chirality. The M isomer crystallizes as a (1/3) acetone solvate, C32H30NO+·Br?·3C3H6O, while the P isomer crystallizes as a (1/1) di­chloro­methane solvate, C32H30NO+·Br?·CH2Cl2. In each structure, O—H?Br hydrogen bonds link the cations and anions to give ion pairs. The seven‐membered azepinium ring adopts the usual twisted‐boat conformation and its ring strain causes a slight curvature of the plane of each naphthyl ring.  相似文献   

3.
The thermospray mass spectrometry (TSP/MS) of five N-methylcarbamates is presented. This is the first time that ions other than [M + H]+ and [M + NH4]+ have been reported using positive TSP/MS. Protonation of ROCONHCH3 yields the [CH3NH2CO] ion, with formation of the ion–molecule adduct [ROCONHCH3 · CH3NH2CO] through elimination of CO from [CH3NH2CO], and the adduct [M + 75], [ROCONHCH3 · OCONH2CH3], is also obtained.  相似文献   

4.
Oxygen-alkyl cleavage is ruled out in the methane chemical ionization- and electron mpact-induced decomposition of cyclopropyl ethers by the finding that for trans,trans-2,3-diethylmethoxycyclopropane the [M ? C2H5·]+ ion is more intense than the [M ? CH3·]+ ion. The possibility for [M + H ? C2H6]+ is discounted by comparison with the methane chemical ionization nass spectrum of tran,tran-2,3-dimethylmethoxycyclopropane. The isobutane chemical ionization nass spectrum of the diethylcyclopropyl methyl ether affords nearly exclusive electrocyclic methanol fragmentation, i.e. [M + H ? CH3OH]+.  相似文献   

5.
Fragmentation patterns resulting from electron impact ionization of 3-(2′-hydroxyethyl)quinolin-2(1H)-one, three of its monosubstituted derivatives and four of its disubstituted derivatives were studied. The molecular ion of quinolinone-2-etbanol undergoes initial fragmentation with the loss of OH·, H2O, CO, ·CHO, CH2O, CH2OH·, CH2?CHOH and HCNO species. The [M – CHO]+ ion is tentatively suggested to have been formed by the expulsion of H· from the [M – CO] ion and the [M - CHO]+ peak may be considered as diagnostic of a 2-quinolone-3-ethanol.  相似文献   

6.
Threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy has been used to investigate the unimolecular chemistry of gas-phase methyl 2-methyl butanoate ions [CH3CH2CH(CH3)COOCH3·+]. This ester ion isomerizes to a lower energy distonic ion [CH2CH2CH(CH3)COHOCH3·+] prior to dissociating by the loss of C2H4. The asymmetric time of flight distributions, which arise from the slow rate of dissociation at low ion energies, provide information about the ion dissociation rates. By modeling these rates with assumed k(E) functions, the thermal energy distribution for room temperature sample, and the analyzer function for threshold electrons, it was possible to extract the dissociative photoionization threshold for methyl 2-methyl butanoate which at 0 K is 9.80 ± 0.01 eV as well as the dissociation barrier of the distonic ion of 0.86 ± 0.01 eV. By combining these with an estimated heat of formation of methyl 2-methyl butanoate, we derive a 0 K heat of formation of the distonic ion CH2CH2CH(CH3)COHOCH3·+ of 101.0 ± 2.0 kcal/mol. The product ion is the enol of methyl propionate, CH3CHCOHOCH3·+, which has a derived heat of formation at 0 K of 106.0 ± 2.0 kcal/mol.  相似文献   

7.
Metastable ion decompositions, collision-activated dissociation (CAD), and neutralization-reionization mass spectrometry are utilized to study the unimolecular chemistry of distonic ion ·CH2CH2CH?OH (2) and its enol-keto tautomers CH3CH=CHOH (1 ) and CH3CH2CH=O (3). The major fragmentation of metastable 1–3 is H· loss to yield the propanoyl cation, CH3CH2C≡O+. This reaction remains dominant upon collisional activation, although now some isomeric CH2=CH-CH+ OH is coproduced from all three precursors. The CAD and neutralization-reionization (+NR+) spectra of keto ion 3 are substantially different from those of tautomers 2 and 1. Hence, 3 without sufficient energy for decomposition (i. e. , “stable” 3) does not isomerize to the ther-modynamically more stable ions 2 or 1, and the 1,4-H rearrangement H-CH2CH2CH=O(3 ) → CH2CH2CH+ O-H (2 ) must require an appreciable critical energy. Although the fragment ion abundances in the + NR + (and CAD) spectra of 1 and 2 are similar, the relative and absolute intensities of the survivor ions (recovered C3H6O ions in the +NR+ spectra) are markedly distinct and independent of the internal energy of 1 and 2 . Furthermore, 1 and 2 show different MI spectra. Based on these data, distonic ion 2 does not spontaneously rearrange to enol ion 1 (which is the most stable C3H6O of CCCO connectivity) and, therefore, is separated from it by an appreciable barrier. In contrast, the molecular ions of cyclopropanol (4 ) and allyl alcohol (5 ) isomerize readily to 2 , via ring opening and 1,2-H? shift, respectively. The sample found to generate the purest 2 is α-hydroxy-γ-butyrolactone. Several other precursors that would yield 2 by a least-motion reaction cogenerate detectable quantities of enol ion 1 , or the enol ion of acetone (CH2=C(CH3)OH, 6 ), or methyl vinyl ether ion (CH3OCH=CH 2 , 7 ). Ion 6 is coproduced from samples that contain the —CH2—CH(OH)—CH2— substructure, whereas 7 is coproduced from compounds with methoxy substituents. Compared to CAD, metastable ion characteristics combined with neutralization-reionization allow for a superior differentiation of the ions studied.  相似文献   

8.
The loss of X· radical from [M + Cu + X]+ ions (copper reduction) has been studied by the so called in-source fragmentation at higher cone voltage (M = crown ether molecule, X = counter ion, ClO4, NO3, Cl). The loss of X· has been found to be affected by the presence/lack of aromatic ring poor/rich in electrons. Namely, the loss of X· occurs with lower efficiency for the [NO2-B15C5 + Cu + X]+ ions than for the [B15C5 + Cu + X]+ ions, where NO2-B15C5 = 3-nitro-benzo-15-crown-5, B15C5 = benzo-15-crown-5. A reasonable explanation is that Anion-π interactions prevent the loss of X· from the [NO2-B15C5 + Cu + X]+ ions. The presence of the electron-withdrawing NO2 group causes the aromatic ring to be poor in electrons and thus its enhances its interactions with anions. For the ion containing the aromatic ring enriched in electrons, namely [NH2-B15C5 + Cu + ClO4]+ where NH2-B15C5 = 3-amino-benzo-15-crown-5, the opposite situation has been observed. Because of Anion-π repulsion the loss of X· radical proceeds more readily for [NH2-B15C5 + Cu + X]+ than for [B15C5 + Cu + X]+. Iron reduction has also been found to be affected by Anion-π interactions. Namely, the loss of CH3O· radical from the ion [B15C5 + Fe + NO3 + CH3O]+ proceeds more readily than from [NO2B15C5 + Fe + NO3 + CH3O]+.  相似文献   

9.
The appearance potentials for the transition ([HNCO]→ [HCO]+ + N), determined for the reaction in the ion source and in the first field free region (15·84 and 15·52 eV) correspond, respectively, to the vertical and adiabatic third ionisation potential of HNCO, as determined by photoelectron spectroscopy. The formyl ion and nitrogen radical are formed in the ground state, which requires predissociation of a quartet molecular ion of HNCO. A heat of formation δHf(HNCO)g = ?25 ± 3 kcal mol·1 was determined from the appearance potential and kinetic energy release for the metastable ion [HCO]+, and from the difference in appearance potentials for the ion [NH]+· produced from the isoelectronic molecules HNCO and HN3.  相似文献   

10.
The distonic radical cation C5H5N+?·CH2 can be generated by the reactions of neutral pyridine with the radical cations of cyclopropane, ethylene oxide, and ketene, as well as with the [C3H6]+ ion from fragmentation of tetrahydrofuran. The distonic product ion can be distinguished from isomeric methylpyridine radical cations because the former gives characteristic [M?CH2]+, [M ? CH2NCH]+, and a doubly charged ion, all of which are produced on collisional activation. Furthermore, the distonic species completely transfers CH2 + to more nucleophilic, substituted pyridines. These properties are all consistent with the assigned distonic structure. Another distonic isomer, the (3-methylene) pyridinium ion, can be distinguished from the (1-methylene)pyridinium ion on the basis of their different fragmentation behaviors. The latter ion exhibits higher stability (lower reactivity) than the prototypal [·CH2NH3 +], making available a distonic species whose bimolecular reactivity can be readily investigated.  相似文献   

11.
The fragmentation reaction [C3(H,D)6]+· → [C3(H,D)5]+ + (H, D) has been examined in the metastable decomposition region for two pairs of labelled propenes: CH3CD?CH2,CD3CH?CD2 and CD3CH?CH2, CH3CD?CD2. The results indicate that complete hydrogen scrambling occurs in the propene molecular ion prior to fragmentation. The isotope effect kH/kD is in the range 2·1 to 3·3.  相似文献   

12.
The kinetics of formation of [C3H5]+[M ? CH3]+, [C3H4]+·[M ? CH4]+· and [C2H4]+·[M ? C2H4]+· from but-1-ene, cis- and trans-but-2-ene, 2-methylpropene, cyclobutane and methylcyclopropance following field ionisation have been determined as a function of time 20 (or 30) picoseconds to 1 nanosecond and at two points in the microsecond time-frame. The results are consistent with the supposition that at the shortest accessible times (20 to 30 picoseconds) the structure of the [C4H8]+· molecular ion qualitatively resembles that of its neutral precursor, but suggest that prior to decomposition within nanoseconds the various molecular ions (excepting cyclobutane where the processes are slower) attain a common structure or mixture of structures. Reaction pathways of the presumed known ion structures are delineated from the nature of decompostion at the shortest times.  相似文献   

13.
The equilibrium constant for the reaction CH2(COOH)2 + I3? ? CHI(COOH)2 + 2I? + H+, measured spectrophotometrically at 25°C and ionic strength 1.00M (NaClO4), is (2.79 ± 0.48) × 10?4M2. Stopped-flow kinetic measurements at 25°C and ionic strength 1.00M with [H+] = (2.09-95.0) × 10?3M and [I?] = (1.23-26.1) × 10?3M indicate that the rate of the forward reaction is given by (k1[I2] + k3[I3?]) [HOOCCH2COO?] + (k2[I2] + k4[I3?]) [CH(COOH)2] + k5[H+] [I3?] [CH2(COOH)2]. The values of the rate constants k1-k5 are (1.21 ± 0.31) × 102, (2.41 ± 0.15) × 101, (1.16 ± 0.33) × 101, (8.7 ± 4.5) × 10?1M?1·sec?1, and (3.20 ± 0.56) × 101M?2·sec?1, respectively. The rate of enolization of malonic acid, measured by the bromine scavenging technique, is given by ken[CH2(COOH)2], with ken = 2.0 × 10?3 + 1.0 × 10?2 [CH2(COOH)2]. An intramolecular mechanism, featuring a six-member cyclic transition state, is postulated to account for the results on the enolization of malonic acid. The reactions of the enol, enolate ion, and protonated enol with iodine and/or triodide ion are proposed to account for the various rate terms.  相似文献   

14.
In the electron impact mass spectra of some alkyl α- and β-hydroxyesters (introduced using the gas chromatography/mass spectrometry (GC/MS) technique), the absence of the molecular ion M and the presence of the [M + 1]+ ion instead is observed. This phenomenon is especially characteristic of C3? C6 glycolates and diethyl malate, and is due to chemical auto-ionization—ion-molecule reactions in the high concentration gradient at the top of the GC peak. The existence of the [M ? 2], [M ?1]+ and M ions in the mass spectra of other β- and α-hydroxyesters is discussed.  相似文献   

15.
Examination of the reactions of the long-lived (>0.5-s) radical cations of CD3CH2COOCH3 and CH3CH2COOCD3 indicates that the long-lived, nondecomposing methyl propionate radical cation CH3CH2C(O)OCH 3 isomerizes to its enol form CH3CH=C(OH)OCH 3 H isomerization ? ?32 kcal/mol) via two different pathways in the gas phase in a Fourier-transform ion cyclotron resonance mass spectrometer. A 1,4-shift of a β-hydrogen of the acid moiety to the carbonyl oxygen yields the distonic ion ·CH2CH2C+ (OH)OCH3 that then rearranges to CH3CH=C(OH)OCH 3 probably by consecutive 1,5- and 1,4-hydrogen shifts. This process is in competition with a 1,4-hydrogen transfer from the alcohol moiety to form another distonic ion, CH3CH2C+(OH)OCH 2 · , that can undergo a 1,4-hydrogen shift to form CH3CH=C(OH)OCH 3 . Ab initio molecular orbital calculations carried out at the UMP2/6-31G** + ZPVE level of theory show that the two distonic ions lie more than 16 kcal/mol lower in energy than CH3CH2C(O)OCH 3 . Hence, the first step of both rearrangement processes has a great driving force. The 1,4-hydrogen shift that involves the acid moiety is 3 kcal/mol more exothermic (ΔH isomerization=?16 kcal/mol) and is associated with a 4-kcal/mol lower barrier (10 kcal/mol) than the shift that involves the alcohol moiety. Indeed, experimental findings suggest that the hydrogen shift from the acid moiety is likely to be the favored channel.  相似文献   

16.
Unstable 2-hydroxpropene was prepared by retro-Diels-Alder decomposition of 5-exo-methyl-5-norbornenol at 800°C/2 × 10?6 Torr. The ionization energy of 2-hydroxypropene was measured as 8.67±0.05 eV. Formation of [C2H3O]+ and [CH3]+ ions originating from different parts of the parent ion was examined by means of 13C and deuterium labelling. Threshold-energy [H2C?C(OH)? CH3] ions decompose to CH3CO++CH3˙ with appearance energy AE(CH3CO+) = 11.03 ± 0.03 eV. Higher energy ions also form CH2?C?OH+ + CH3 with appearance energy AE(CH2?C?OH+) = 12.2–12.3 eV. The fragmentation competes with hydrogen migration between C(1) and C(3) in the parent ion. [C2H3O]+ ions containing the original methyl group and [CH3]+ ions incorporating the former methylene and the hydroxyl hydrogen atom are formed preferentially, compared with their corresponding counterparts. This behaviour is due to rate-determining isomerization [H2C?C(OH)? CH3] →[CH3COCH3], followed by asymmetrical fragmentation of the latter ions. Effects of internal energy and isotope substitution are discussed.  相似文献   

17.
The expulsion of CH3· from the [M ? C2H4]+· ion of butyrophenone occurs with loss of a ring hydrogen and the methylene group as evidenced by deuterium labeling and metastable transitions.  相似文献   

18.
CASSCF–MRMP2 calculations have been carried out to analyze the reactions of the methyl fluoride molecule with the atomic ions Ge+, As+, Se+ and Sb+. For these interactions, potential energy curves for the low‐lying electronic states were calculated for different approaching modes of the fragments. Particularly, those channels leading to C? H and C? F oxidative addition products, H2FC? M? H+ and H3C? M? F+, respectively were explored, as well as the paths which evolve to the abstraction (M? F++CH3) and the elimination (CH2M++HF) asymptotes. For the reaction Ge++CH3F the only favorable channel leads to fluorine abstraction by the ion. As+ and Sb+ can react with CH3F along pathways yielding stable addition products. However, a viable path joining the oxidative addition product H3C? M? F+ with the elimination asymptote CH2M++HF was found for the reaction of the fluorocarbon compound with As+. No favorable channels were detected for the interaction of fluoromethane with Se+. The results discussed herein allow rationalizing some of the experimental data found for these interactions through gas‐phase mass spectrometry.  相似文献   

19.
The C3H6O ion formed upon the dissociative ionization of 2-methoxyethanol is identified by a combination of several tandem mass spectrometry methods, including metastable ion (MI) characteristics, collisionally activated dissociation (CAD), and neutralization—reionization mass spectrometry (NRMS). The experimental data conclusively show that 2-methoxyethanol molecular ion, namely, HOCH2CH2OCH 3 , loses H2O to yield mainly the distonic radical ion ·CH2CH2OCH 2 + along with a smaller amount of ionized methyl vinyl ether, namely, CH2=CHOCH 3 . Ring-closed products, such as the oxetane or the propylene oxide ion are not observed. The proportion of ·CH2CH2OCH 2 + increases with decreasing internal energy of the 2-methoxyethanol ion, which indicates a lower critical energy for the pathway leading to this product than for the competitive generation of CH2=CHOCH 3 . The present study also uses MI, CAD, and NRMS data to assess the structure of the distonic ion+ (CH3)CHOCH2· (ring-opened ionized propylene oxide) and evaluate its isomerization proclivity toward the methyl vinyl ether ion.  相似文献   

20.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号