首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the approximate calculation of matrix elements with respect to projected Hartree–Fock wave functions is proposed. The method is tested on some calculations in the many-parameter AMO method. It is found that the approximation reduces the amount of work, involved in the evaluation of the energy, by a factor of five and that it reproduces the exact values to within a few per cent.  相似文献   

2.
Different kinds of improved uncoupled Hartree–Fock methods are proposed for the calculation of second-order perturbation energies. Using these methods inequalities are derived for the error of the uncoupled procedure with geometric approximation.  相似文献   

3.
Starting out with the electron gas, we make a survey of the reasons for the singularity in the derivative of the orbital energy with respect to the wave number at the Fermi level for a realistic extended metallic system. Some properties of the occupation function are reviewed and it is pointed out that the direct reason for the singularity resides in a divergent lattice sum originating in the exchange part of the orbital energy. Numerical aspects are discussed, in particular with reference to the difficulty in detecting this singularity in actual computations.  相似文献   

4.
We have extended to molecules a density functional previously parametrized for atomic computations. The Coulomb-hole–Hartree–Fock functional, introduced by Clementi in 1963, estimates the dynamical correlation energy by the computations of a Hartree–Fock-type single-determinant wave function, where the Hartree–Fock potential was augmented with an effective potential term, related to a hard Coulomb hole enclosing each electron. The method was later revisited by S. Chakravorty and E. Clementi [Phys. Rev. A 39 , 2290 (1989)], where a Yukawa-type soft Coulomb hole replaced the previous hard hole; atomic correlation energies, computed for atoms with Z = 2 to Z = 54 as well as for a number of excited states, validated the method. In this article, we parametrized a function, which controls the width of the soft Coulomb hole, by fitting the first and second atomic ionization potentials of the atoms with 1 ? Z ? 18. The parametrization has been preliminarily validated by computing the dissociation energy for a number of molecules. A few-determinant version of the Coulomb-hole–Hartree–Fock method, necessary to account for the nondynamic correlation corrections, is briefly discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
The conditions for instability of solutions of Hartree–Fock and projected Hartree–Fock equations are derived in a form involving finite real symmetric matrices. These conditions are also expressed in terms of the Fock–Dirac density matrix, both at the spin–orbital and at the orbital level. The particular variations which give rise to the so-called singlet and triplet instabilities are described.  相似文献   

6.
7.
8.
9.
The first-order 1/Z perturbation theory of the extended Hartree–Fock approximation for two-electron atoms is described. A number of unexpected features emerge: (a) it is proved that the orbitals must be expanded in powers of Z?1/2, rather than in Z?1 as expected; (b) it is shown that the restricted Hartree–Fock and correlation parts of the orbitals can be uncoupled to first order, so that second-order energies are additive; (c) the equation describing the first-order correlation orbital has an infinite number of solutions of all angular symmetries in general, rather than only one of a single symmetry as expected; (d) the first-order correlation equation is a homogeneous linear eigenvalue-type equation with a non-local potential. It involves a parameter μ and an eigenvalue ω(μ) which may be interpreted as the probability amplitude and energy of a virtual correlation state. The second-order correlation energy is 2μ2ω. Numerical solutions for the first-order correlation orbitals, obtained variationally, are presented. The approximate second-order correlation energy is nearly 90% of the exact value. The first-order 1/Z perturbation theory of the natural-orbital expansion is described, and the coupled first-order integro-differential perturbation equations are obtained. The close relationship between the first-order extended Hartree–Fock correlation orbitals and the first-order natural correlation orbitals is discussed. A comparison of the numerical results with those of Kutzelnigg confirms the similarity.  相似文献   

10.
We report a new mathematical result: it is possible to construct a spectral representation of the two particles Coulomb potential in the form of | r ? r |?1 = ∑λλg( r ) gλ( r ). We call this formula λ‐decomposition. Two special nontrivial cases of λ‐decomposition are reported together with the numerical analysis of the convergence for one of them. It is shown how λ‐decomposition allows to construct a new fast algorithm for Hartree‐Fock exchange operator calculation, in which the calculation of electron repulsion integrals (ERIs) is completely avoided. The connection between the new method and the resolution of identity and Cholesky decomposition based approaches has been established. Finally, the accuracy of ERIs evaluation within the new approach has been studied numerically. The results demonstrate that it is possible to achieve the accuracy of 10?10 for the ERIs in wide range of their orbital exponents with relatively small number of terms in λ‐decomposition. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

11.
The Hartree–Fock method (standard Roothaan closed-shell HF –LCAO theory) and the Hartree–Fock–Slater method (restricted HFS –LCAO –DV method developed by Baerends and Ros) have been compared with emphasis on the respective one-electron equations and on the matrix elements of the respective Fock operators. Using the same STO basis in the two cases, the matrix elements of the Fock operators and of their separate one-electron, Coulomb, and exchange contributions have been calculated for the same orbitals and density of the ground state of the diatomic molecule ZnO. The effects of methodical (exchange potential) and numerical (DV method, density fit) differences between the HF and HFS methods on the various matrix elements have been analyzed. As expected the methodical effect prevails and is responsible for the higher (less negative) values of the matrix elements of the HFS Fock operator compared to those of the HF Fock operator. Numerical effects are observable also and are caused by the difference in integration procedures (DV method), not by the density fit.  相似文献   

12.
Hartree–Fock instabilities are investigated for about 80 compounds, from acetylene to mivazerol (27 atoms) and a cluster of 18 water molecules, within a double ζ basis set. For most conjugated systems, the restricted Hartree–Fock wave function of the singlet fundamental state presents an external or so‐called triplet instability. This behavior is studied in relation with the electronic correlation, the vicinity of the triplet and singlet excited states, the electronic delocalization linked with resonance, the nature of eventual heteroatoms, and the size of the systems. The case of antiaromatic systems is different, because they may present a very large internal Hartree–Fock instability. Furthermore, the violation of Hund's rule, observed for these compounds, is put in relation with the fact that the high symmetry structure in its singlet state has no feature of a diradical‐like species. It appears that the triplet Hartree–Fock instability is directly related with the spin properties of nonnull orbital angular momentum electronic systems. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 483–504, 2000  相似文献   

13.
A RHF energy minimization procedure based on the treatment outlined in Part I of this series of articles is presented. Test calculations performed on several closed- and open-shell systems show that the present procedure is definitely superior to the conventional SCF methods. In particular, the convergence of this procedure is ensured, the rate of convergency is high, and the computational cost of each cycle is low.  相似文献   

14.
A method for the determination of the symmetry of first-order vectors in Hartree–Fock perturbation theory is developed. This leads to the definition of symmetry-adapted basis vectors to be employed at first order in the perturbation. It is shown that computer time can be saved, to some extent, in the calculation of second-order properties, by exploiting molecular symmetry. Specific examples are given for methane, ammonia, and water.  相似文献   

15.
The Hartree–Fock equations are derived in the MO -LCAO approximation for the case when the integrals (except overlap integrals) over the atomic orbitals are charge-dependent. It is shown that inclusion of the overlap matrix in the iterative procedure gives equations which are too complicated for the simple model under consideration. The approach is applied to the VESCF method in the PPP scheme.  相似文献   

16.
A one-electron correlation operator is introduced into the Hartree–Fock self-consistent field equation. The correlation operator is derived from the second-order perturbation theory. Energies of atomic and molecular systems calculated from this modified Hartree–Fock equation are equal to that from second-order perturbation of Hartree–Fock equation. The modified equation can also be solved self-consistently by the LCAO approximation. We also presented the modified expressions for other operators.  相似文献   

17.
The validity of the Hartree–Fock (HF ) approximation in bis(π-pentadienyl)dinickel ( 1 ) and in cyclopentadienyl-allyl-cyclobutadiene-dinickel ( 2 ) has been investigated by means of the Thouless instability conditions in the computational framework of a variable model Hamiltonian. Singlet, nonsinglet (triplet), and nonreal instabilities in 1 and 2 have been studied as a function of the one-electron resonance integral β and as a function of the one- and two-center elements of the electron–electron interaction. The one-center integrals of Coulomb (γ) and exchange-type (K) have been modified by a multiplicative factor; the two-center integrals (γ) have been calculated by means of an exponential interpolation formula with a variable decay amplitude. Additionally the Thouless conditions have been studied for nuclear deformations. The stability domain of the HF solution in the model space spanned by the variable INDO Hamiltonian has been analyzed. The nature of the many-body interactions in the unstable region depends strongly on the parametrization of the model operator. HF instabilities in the high-density region (long-range forces) of 1 have their origin in individual particle–hole fluctuations while negative roots for short-range forces (low-density region) are similar to collective excitations in many-body systems (strong off-diagonal coupling). The opposite behavior is encountered in the Ni complex 2 . The physical origin of these different types of correlation processes are analyzed in a simple two-electron two-orbital model. The nature of the HF fluctuations in 1 and 2 , the importance of spatial and spin correlation, and the coupling of symmetry breaking of the electronic wave function with nuclear deformations are compared with the nature of phase transitions in solid-state systems.  相似文献   

18.
This is the first application of a rigorous, established multiple time-step method to ab initio molecular dynamics. The resulting algorithm is conceptually simple and easy to implement, but very effective. It translates the large mass differences present in ab initio molecular dynamics into substantial savings in computer time while retaining high accuracy. This transforms ab initio molecular dynamics from a desirable but prohibitively expensive possibility into a viable method, at least for short-time phenomena in small systems or for otherwise inaccessibly complicated potential energy surfaces. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
A new derivation is given for the Waller–Hartree–Fock double-determinantal spatial wave function. One starts from the single-determinant wave function in which a orbitals are doubly occupied, and decomposes it into a sum of products of spatial and spin functions. The spatial product of the first genealogical spin eigenfunction is a double-determinantal function. The derivation is based on the simple form of U1?(P) when the representation matrix is obtained from the genealogical spin eigenfunction.  相似文献   

20.
The earlier numerical multiconfiguration Hartree–Fock atomic structure package was not designed with high-performance computers in mind. In this paper, some new algorithms based on spline–Galerkin methods are described that are appropriate for concurrent/vector architectures. The goal is to improve the level of numerical accuracy by several orders of magnitude using fewer basis functions than points in a numerical grid. Of critical importance is the robustness of the code: The most serious problems in the numerical implementation were associated with orthogonality constraints. In a spline basis approach, the orthogonality requirements can be integrated into quadratically convergent update procedures. These procedures are evaluated for a number of cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号