首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A relatively high-molecular-weight polyurethane based on MDI and ethylene glycol was prepared and characterized. This polymer was metalated with sodium hydride in N,N-dimethylformamide (DMF) at about 0°C. Metalation was confirmed principally by spectroscopic identification of the N-methyl derivative obtained by coupling the metalated polymer with methyl iodide. Under appropriate reaction conditions the metalated polyurethane was used for the anionic graft polymerization of the reactive monomers acrylonitrile and ethylene and propylene sulfides. Attempted anionic graft polymerizations with other monomers, including styrene and ethylene and propylene oxides, were unsuccessful. The polyurethane grafted with acrylonitrile was separated by fractionation from accompanying small amounts of polyacrylonitrile, a low-molecular-weight homopolymer. One sample of polyurethane grafted with acrylonitrile was identified by microanalysis, IR, NMR, and increase in weight and was also characterized by differential thermal analysis.  相似文献   

2.
During the development of column extraction techniques, two methods of separation were identified. The first method is based on altering polymer solubility by varying the ratio of solvent in a solvent/nonsolvent mixture at a constant temperature above the polymer melting point (gradient solvent elution fractionation). This method fractionates polymers according to molecular weight. The second method is based on altering polymer solubility by varying solvent temperature (temperature rising elution fractionation—TREF). TREF fractionates semicrystalline polymers with respect to their crystallizability, independently of molecular weight effects. In the present article, supercritical propane will be used to fractionate a high‐density polyethylene sample by molecular weight and short chain branching. The main advantage of supercritical fluid fractionation is that large polymer fractions with narrow molecular weight distributions (isothermal fractionation) or narrow short chain branching distributions (isobaric fractionation) can be obtained without using hazardous organic chlorinated solvents. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 553–560, 1999  相似文献   

3.
A linear polyurethane of high molecular weight was prepared in solution by the polyaddition of equimolar amounts of ethylene glycol and methylene bis(4-phenyl isocyanate). The polymer was fractionated by using a direct sequential extraction procedure, with a solvent–nonsolvent system consisting of N,N′-dimethylformamide (DMF) and acetone (A). The resulting fractions were characterized by viscosity and lightscattering measurements. The relationship between the intrinsic viscosity and molecular weight was found in DMF at 25°C. to be [η] = 3.64 × 10?4M0.71. The unperturbed polymer chain dimensions were determined from intrinsic viscosity measurements carried out under experimentally determined theta conditions.  相似文献   

4.
Poly(N-n-butylitaconimide) was prepared by radical polymerization in benzene and in bulk at 60°C and was subsequently fractionated at 30°C with benzene and methanol as solvent and nonsolvent, respectively. Relationships between molecular weight and intrinsic viscosity (Mark-Houwink-Sakurada equations) in tetrahydrofuran, benzene, and toluene at 30°C are established. From the Burchard-Stockmayer-Fixman plot, the characteristic ratio of this polymer is determined, and local chain conformation is discussed in relation to the termination process in radical polymerization. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Porous membranes having various average pore sizes, ranging from 1 to 4 nm, were prepared from silica–zirconia composite colloidal sols by sol–gel processes, and were used for nanofiltration (NF) experiments in non-aqueous solutions of ethanol and methanol. Silica–zirconia membranes, which were tested in pure alcohol solutions for the first time after the preparation of the membrane, showed a gradual decrease in flux for approximately 100 h and then reached a steady flux. When the feed, after reaching the steady flux with ethanol, was changed to another alcohol, steady flux was attained after only several hours. Ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol (PEG) of various molecular weights (PEG400, 600, 1000, and 2000) were nanofiltrated in methanol and ethanol solutions at 50°C. Rejections in non-aqueous solutions increased with applied pressure, which is similar to aqueous solutions. Control of pore size of silica–zirconia membranes showing molecular weight cut-offs in methanol solutions at 300, 600, 1000, and >1000, respectively, was possible by the appropriate choice of colloidal particle sizes. Rejection in methanol solution showed a tendency similar to that in ethanol solution, while rejection in methanol was slightly larger than in ethanol solutions. In addition, rejection in water was much smaller than in methanol solution. For example, the rejection of PEG600 in water and methanol was 0.03 and 0.74, respectively. These results suggest that solvent type plays an important role in determining rejection, as a result of the interaction with solvents and/or membrane surface.  相似文献   

6.
A mixture of homopolymer and graft copolymer was obtained by adding the monomer at 0°C to the polylithiodiene solution. Styrene, methyl methacrylate, and acrylonitrile were used as the monomers. Polylithiodienes were prepared by the metalation of diene polymers, i.e., polybutadiene or polyisoprene, with the use of n-butyllithium in the presence of a tertiary amine (N,N,N′,N′-tetramethylethylenediamine) in n-heptane. The graft copolymers were separated by solvent extraction and were confirmed by turbidimetric titration and elementary analysis. Oxidation of the polybutadiene–styrene grafts revealed that the molecular weight of the side chains was the same as the molecular weight of the free polystyrene formed. The grafting efficiency and grafting percentage were studied for polybutadiene–styrene graft copolymers prepared under various conditions.  相似文献   

7.
Ring-opening polymerization of 1,5-dioxepan-2-one initiated by 1,1,6,6-tetra-n-butyl-1,6-distanna-2,5,7,10-tetraoxacyclodecane was carried out in chloroform, dichloromethane, or 1,2-dichloroethane. Effects of reaction temperature, solvent, and monomer-to-initiator ratio were investigated. Polymerization kinetics showed a first-order dependence on the monomer for polymerization in chloroform and dichloromethane at 40°C. The kinetic order with respect to the initiator were a first order when dichloromethane was used as the solvent, the order in initiator changed, depending on the initiator concentration when chloroform was used. A maximum in molecular weight was observed at 40°C when chloroform was used as the solvent. The change of solvent did not markedly alter the polymerization rate or the molecular weight of the polymers prepared, as expected from the coordination insertion mechanism. Depolymerization of the polymers formed was observed when the reaction was allowed to continue after complete monomer conversion in chloroform as reaction medium at 40°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3407–3417, 1999  相似文献   

8.
The chain-scission reaction which occurs in copolymers of styrene and acrylonitrile has been studied at temperatures of 262, 252, and 240°C. Under these conditions volatilization is negligible, and chain scission can be studied in virtual isolation. At 262°C three kinds of chain scission are discernible, namely, at weak links which are associated with styrene units, “normal” scission in styrene segments of the chain and scission associated with the acrylonitrile units. The rate constants for normal scission and scission associated with acrylonitrile units are in the ratio of approximately 1 to 30. The molecular weight of the copolymer has no effect on the rates of scission. At 252°C the same general behavior is observed for the copolymers containing up to 24.9% acrylonitrile. The 33.4% acrylonitrile copolymer is anomalous, however. At 240°C the trends observed at 262°C appear to break down completely although individual experiments are quite reproducible. This behavior at the lower temperatures is believed to be associated with the fact that the melting points of the various copolymers are in this temperature range. Thus the viscosity of the medium, which should be expected to have a strong influence on the chain scission reaction, will be changing rapidly with temperature, copolymer composition, and molecular weight in this temperature range.  相似文献   

9.
The comparison of four extraction techniques for isolation of five native and one labelled steroid oestrogens from sediment was described. The three conventional extraction techniques Soxhlet warm extraction (SWE), accelerated solvent extraction (ASE), microwave-assisted extraction (MAE) and a promising technique QuEChERS were tested for isolation of low environmentally relevant oestrogen concentrations using different extraction conditions. The least expensive and time-consuming method QuEChERS provided the best extraction recoveries (53–84%) from all techniques. MAE achieved the highest recovery from conventional techniques for less polar oestrogens using dichloromethane: acetone 3:1 mixture as an extraction solvent (50–71%), but for extraction of the whole group of oestrogens including more polar estriol acetone or methanol must be used. ASE provided higher extraction recoveries using dichloromethane at 60°C (53–74%) for less polar oestrogens. However, the repeatability of results was unsatisfactory and recoveries using other extraction conditions were lower than for MAE. The most time-consuming SWE achieved the worst extraction recoveries and for isolation of low oestrogen concentrations from sediments, it is completely unsuitable.  相似文献   

10.
The kinetics of low-temperature graft copolymerization of triethylene glycol dimethacrylate with Krasol LBH-3000 oligobutadiene rubber was studied in relation to the initial mixture composition at 20°C. The experimental kinetic data were compared with the results of calculation by the suggested equation. The copolymer compositions were calculated from the extraction data in relation to the initial mixture compositions. The binary copolymerization constants were calculated by the analytical and graphical methods.  相似文献   

11.
The copolymerization of styrene and styrene–acrylonitrile with polybutadienes of various microstructures was studied and the reactivity ratios determined. It was shown that for the styrene/acrylonitrile/polybutadiene systems the 1,2 structure is twice as reactive as the trans and four times as reactive as the cis. Studies in the temperature range of 50–80°C reveal that the reactivity of the polybutadiene increases as the temperature rises. When styrene is the monomer the reactivity of polybutadiene and the temperature effect is less intense than when styrene–acrylonitrile is used.  相似文献   

12.
Samples of styrene–acrylonitrile (SAN) copolymer of different compositions, molecular weights, block copolymers, and a blend of styrene and acrylonitrile homopolymers were prepared and characterized by the method of pyrolysis gas chromatography. On decomposition of SAN copolymer samples at 645°C, eleven components were identified, the most important of them being styrene, acrylonitrile, and propionitrile. By examination of the pyrolyzate composition during pyrolysis of the SAN copolymer of different compositions, it was established that the propionitrile yield was definitely decreased when the acrylonitrile concentration in copolymer was about 60 mole-%. Further, from the propionitrile yield, we could distinguish random SAN copolymer from the styrene-acrylonitrile homopolymer blend, and on the basis of propionitrile yield some information on the molecular structure of the copolymer could be obtained. The styrene yield depends linearly on the copolymer composition. This permits determination of copolymer composition on the basis of the styrene yield. Furthermore, the effects of decomposition temperature and of molecular weight on the yields of styrene and acrylonitrile were examined.  相似文献   

13.
The competitive reactions of cyanoisopropyl radicals with the mixed monomers styrene and acrylonitrile have been investigated using the nitroxide radical trapping technique. When the trap concentration is kept low, second, third, and even fourth generation (in terms of successive monomer addition) carbon radicals have been observed as trapped products. The ratio of rate constants for the addition of styrene and acrylonitrile to cyanoisopropyl radicals is 2.7 at 75°C and 5.3 at 105°C. These values are compared with the ratios for reactions of these two monomers with a number of other radicals and discussed in terms of the polarities of the radicals and monomers. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2169–2176, 1998  相似文献   

14.
Investigations were performed on acetone and benzene-sensitized degradation of triethylene glycol (TEG), polyethylene glycol 400 (PEG 400), and polyethylene glycol 4000 (PEG 4000) in aqueous solutions exposed to irradiation at λ = 254 nm and λ ~ 313 nm. The systems investigated were exposed at 20°C (±1°C) in both deaerated and undeaerated solutions. The course of the photosensitized degradation was examined viscosimetrically. The determined quantum yield (?) of chain scission decreases distinctly as the molecular weight of the polymer rises, irrespective of the wavelength of the light absorbed and deaeration of system exposed.  相似文献   

15.
This study investigated the fabrication of styrene–acrylonitrile copolymer (SAN) membrane using the nonsolvent-induced phase separation (NIPS) method with a combination of solvents, namely N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) and water as the nonsolvent. Since the impact of varying solvent ratios on SAN membrane performance remained unexplored, this study aimed to address this knowledge gap in the context of oil–water emulsion separation. Experimental results demonstrated that employing a solvent mixture, rather than a pure solvent, led to improved membrane performance. The primary objective of this work was to experimentally determine the optimal solvent ratio for enhancing SAN copolymer membrane performance. Additionally, the Flory–Huggins thermodynamic model was applied to investigate the possibility of predicting membrane binodal data. The thermodynamic analysis revealed a strong agreement between calculated and experimental binodal data, with an error of less than 3.8%. Notably, membranes produced with an equal solvent ratio exhibited the most hydrophilic properties, resulting in increased permeability. The permeate flux for distilled water reached 320 L/(m2 h) (LMH), and water contact angle of the membrane was 22°. Furthermore, mechanical resistance increased up to 50%. These results highlight the promising potential of fabricating SAN membrane using solvent mixtures for oil–water emulsion separation.  相似文献   

16.
Hydroxyl-terminatd poly(triethylene glycol terephthalate) was crosslinked with an aromatic triisocyanate. Birefringence–stress–strain experiments, performed on the networks at 70°C, showed an anomalous increase in the modulus and a downturn in the birefringence–strain isotherms at high elongations. These results suggest that crystallinity is not responsible for the non-Gaussian behavior of the chains at high extension. The same kind of experiments were performed over the range 20–70°C. Values of the optical configuration parameter Δa of the order of 13.3 × 10?24 cm3 with negligible temperature coefficient were found for these networks. The quantities Δa and d In Δa/dT were calculated by means of the rotational isomeric state model. Better agreement between the theoretical and experimental values of these parameters was found for poly(triethylene glycol terephthalate) than for poly(diethylene glycol terephthalate). Since the polarities of the two chains are similar, intermolecular interactions involving terephthaloyl residues may be responsible for the discrepancies observed between theory and experiment for Δa in aromatic polyesters.  相似文献   

17.
The grafting of styrene onto low molecular weight polybutadienes and butadiene–styrene co-polymers was studied. A mathematical method was used for the design of experiments and for the determination of the optimum grafting conditions with respect to the conversion of styrene and the efficiency of grafting. The reaction parameters were temperature (65–105°C), time (2–10 hr), concentration of the initiator, polymer to monomer ratio (10/90–90/10) and dilution by solvent (toluene). The optimum grafting conditions were chosen under which 50–60 wt-% of styrene was grafted onto backbone polymer at a high conversion of the monomer. It was found that the reactions producing graft copolymer prevailed over the styrene homopolymerization when the temperatures employed were lower (65–85°C), and the reaction time (8–10 hr), backbone polymer/monomer ratio, and the dilution by solvent were higher. The efficiency, density, and degree of grafting were found to increase with the increase in the molecular weight of the backbone polymer. The efficiencies and densities of grafting onto low molecular weight polybutedienes were higher than those of grafting onto low molecular weight butadiene–styrene copolymers. Grafting efficiencies and grafting densities were in the ranges 37.8–61.6 wt % and 0.06–0.26, respectively, in the studied range of number-average molecular weights (M?n = 2400–6000).  相似文献   

18.
Poly(vinyl chloride) (PVC) is shown to be miscible with styrene/acrylonitrile copolymers (SAN) having AN compositions from 11.5 to 26%. Blend samples were prepared using several methods, including solution casting, melt mixing, and precipitation of solutions by a nonsolvent. It is shown that the blend phase behavior is affected by preparation method due to the solvent effect, or Δχ effect, and lower critical solution temperature (LCST) behavior. The intramolecular repulsion between styrene and acrylonitrile units in SAN is shown to be the cause of miscibility using heats of mixing obtained from low-molecular-weight analog compounds. An FTIR analysis supplements the above results.  相似文献   

19.
By the use of thermal volatilization analysis (TVA), 292°C was chosen as a suitable temperature for a preliminary experimental survey of the thermal degradation of styrene–acrylonitrile copolymers. TVA also indicated that there is no fundamental change in reaction mechanism as the acrylonitrile content of the polymer is increased from zero to 33.4% although there is a progressive increase in the rate of volatilization. The increase in the rate of volatilization over that of polystyrene is directly proportional to the acrylonitrile content of the copolymer. From the changes in molecular weight which occur during the reaction it is clear that the primary effect of the acrylonitrile units on stability is to cause an increased rate of chain scission, but there is a small proportion of “weak links” which are associated with the styrene units and which are broken instantaneously at 292°C. The number of monomer molecules liberated per chain scission, the zip length, is about 40 for polystyrene in the initial stages of degradation and decreases only to the order of 20 even in copolymer containing 24.9% acrylonitrile. Thus the unzipping process is not severely affected by the acrylonitrile units; this is borne out by the fact that acrylonitrile appears among the products in very much greater concentrations than from pure polyacrylonitrile. The proportion of larger chain fragments (dimer, trimer, etc.) also increases with acrylonitrile content.  相似文献   

20.
In the current report, casting from good solvent (acetone) and casting from mixed solvent and nonsolvent were employed for preparing thin films of terpolymer of T etrafluoroethylene (TFE), H exafluoropropylene (HFP), and V inylidene fluoride (VDF) (THV), on silicon wafers. These films revealed various morphologies and wetting behaviors depending on the solution concentration, temperature, and thin film preparation method. The THV thin films prepared by casting from good solvent showed smooth morphology with holes. The thin film prepared from a 3 wt % THV/acetone solution by casting from good solvent at 15 °C demonstrated spheres in addition to the smooth morphology, while the thin film prepared from a 5 wt % THV/acetone solution at 15 °C by casting from good solvent had a mesh‐like structure with some linked spheres. Casting the thin films from mixed solvent and nonsolvent resulted in various morphologies such as different sphere sizes embedded in a dense film layer, and hexagonal close packed structures. The thin films prepared by casting from good solvent showed a slightly hydrophobic character, with a measured water contact angle of approximately 99°, while the nonsolvent cast films had a water contact angle as high as 145°. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 643–657  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号