首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用固相反应法制备了(1-x)Na0.5Bi0.5TiO3-K0.5Na0.5NbO3体系陶瓷,研究了KNN含量对Na0.5Bi0.5TiO3-xK0.5Na0.5NbO3陶瓷的晶体结构、显微结构和介电性能的影响。XRD分析结果表明,KNN进入NBT形成固溶体,该体系陶瓷均为钙钛矿结构。扫描电镜分析显示KNN的引入有利于细化晶粒,提高陶瓷致密度。测试了样品在不同频率(1 kHz,10 kHz,100 kHz,1 MHz)下的的介电温谱(室温~500℃),结果表明随着KNN含量的增加,介电峰逐渐变宽,弛豫性逐渐增强,铁电-反铁电相变温度Td和反铁电-顺电相变Tm都明显降低,当x≥0.25时,Td降至室温或更低;室温(1 kHz)下,KNN和NBT相对介电常数分别为675和575,而KNN和NBT形成的固溶体介电常数明显增大,当x=0.25时,达到最大值εr=1653。在NBT中掺入KNN得到了介电峰明显宽化、在较宽温度范围内具有低电容温度系数的致密弛豫铁电体。  相似文献   

2.
采用高温自助熔剂法制备了(Na0.5Bi0.5) TiO3-(K0.5Bi0.5) TiO3(简称:NBT-KBT)无铅铁电单晶,晶体尺寸为5mm×6 mm×1 mm.利用X射线衍射(XRD)手段研究了NBT-KBT单晶的相结构,结果表明晶体样品为钙钛矿四方相结构.Raman散射结果也表明了NBT-KBT单晶的拉曼振动模式具有四方相结构特征.利用扫描电镜(SEM)和透射电镜(TEM)研究了单晶的表面形貌和微结构特征.另外,单晶介电常数随温度以及频率的变化关系显示单晶具有弛豫铁电体特性.  相似文献   

3.
以廉价的Nb2O5为铌源,采用共沉淀法制备了纳米Ba(Fe0.5Nb0.5)O3粉体.用XRD、TG-DSC、FT-IR、SEM等测试手段分析了烧结温度、保温时间、体系温度、pH值等对前驱体粉体的物相、形貌及晶粒大小的影响,并对粉体的磁学性能进行了表征.结果表明:合成温度在950℃,体系温度在30℃和50℃均可获得纯相立方钙钛矿结构的Ba(Fe0.5 Nb0.5)O3粉体,保温时间和pH值对粉体相结构变化无影响.在体系温度为30℃,pH=10,前驱体粉体在950℃煅烧2h后获得颗粒尺寸约30 nm的Ba(Fe05Nb0.5)O3粉体,且粉体具有弱的铁磁性.  相似文献   

4.
采用固相反应法制备了Nb2O5掺杂的(1-x)BaTiO3-xBi0.5K0.5TiO3(BT-BKT,0≤x≤0.02)系统陶瓷,研究了Nb2O5和BKT掺杂量对该系统陶瓷显微结构和电性能的影响。结果表明:BaTiO3陶瓷的晶格轴率c/a值随着BKT含量的增加而变大,陶瓷具有良好的晶粒和明显的晶界。BT-BKT陶瓷的居里温度(Tc)也随着BKT的加入向高温移动,当x=0.01时,Tc提高到150℃,但室温电阻率(ρRT)随着BKT含量的增加也快速增大。  相似文献   

5.
以La(NO3)3、Cr(NO3)3.9H2O、Sr(NO3)2、Mn(NO3)2为原料,用柠檬酸络合溶胶-凝胶法制备了La0.75Sr0.25Cr0.5Mn0.5O3-δ凝胶,在700℃下焙烧2 h得到La0.75Sr0.25Cr0.5Mn0.5O3-δ(LSCM)纯相纳米粉,颗粒呈球形,分散性较好,平均粒径在28 nm左右。将上述粉体、乙基纤维素及松油醇按比例混合,经球磨、加乙醇研磨后制备成具有一定粘稠度的LSCM浆料。采用丝网印刷技术在YSZ片上制成不同厚度的LSCM膜,经1400℃煅烧,制备成厚膜型LSCM质NO2传感器。采用交流阻抗谱技术研究了膜层厚度、工作温度对传感器气敏性能的影响。结果表明:在一定温度条件下,传感器电阻与NO2浓度呈良好的线性关系。在600℃下,刷涂了7层LSCM的传感器线性最佳,灵敏度最高。  相似文献   

6.
应用磁控溅射法制备的非晶NiTi薄膜作阻挡层,在Si (100)衬底上构造了(La0.5Sr0.5)CoO3/ Pb(Zr0.4Ti0.6)O3/(La0.5Sr0.5)CoO3(LSCO/PZT/LSCO)铁电电容器异质结,研究了Pb(Zr0.4Ti0.6)O3铁电薄膜的结构和物理性能.实验发现LSCO/PZT/LSCO铁电电容器具有良好的电学性能,在417kV/cm的驱动场强下,PZT铁电电容器具有较低的矫顽场强(125kV/cm)和较高的剩余极化强度(19.0μC/cm2),良好电容-电压特性(C-V)和保持特性,铁电电容器经过1010次反转后,极化强度没有明显下降,表明了非晶NiTi薄膜可以用作高密度硅基铁电存储器的扩散阻挡层.  相似文献   

7.
采用固相反应合成法制备了(1-x)(0.96Bi0.5Na0.5TiO3-0.04BaTiO3)-xBi(Zn0.5 Ti0.5)O3陶瓷(x≤0.10).通过X射线衍射,介电温度谱等对该体系陶瓷的相结构及弛豫特性进行了研究.结果发现,该陶瓷在Bi(Zn0.5Ti05)O3加入量低于0.05时呈现纯钙钛矿结构.此外,随着Bi(Zn0.5Ti0.5)O3加入量的增加,其相结构由三方-四方共存向赝立方结构转变;同时,陶瓷的弥散因子上升,偶极子取向冻结活化能下降,表明BZT的加入明显地增加了0.96Bi0.5Na0.5TiO3-0.04 BaTiO3陶瓷的弛豫性.  相似文献   

8.
以碳酸盐和氧化物为原料,通过凝胶浇注法制得了Sm_(0.5)Sr_(0.5)Co_(1-x)Fe_xO_(3-δ)(SSCF, x=0~1.0)粉体,对不同温度煅烧所得粉体的相组成和微观形貌进行了测定.制备的Sm_(0.5)Sr_(0.5)Co_(1-x)Fe_xO_(3-δ)粉体模压成形后烧结得到SSCF烧结体.测定了烧结体的密度和孔隙率并对烧结体的微观结构进行了观测,用直流四端子法测定了烧结样品的电导率并对其热膨胀系数及电化学性能等进行了测定.结果表明:干凝胶在1000 ℃煅烧可以得到粒度均匀细小的SSCF粉体,其晶体结构随Fe含量发生变化;一定温度烧结的Sm_(0.5)Sr_(0.5)Co_(1-x)Fe_xO_(3-δ)材料具有多孔结构,随烧结温度的增加,烧结体的密度增大,孔隙率减小;Fe的掺杂降低了Sm_(0.5)Sr_(0.5)CoO_(3-δ)材料的热膨胀系数,Sm_(0.5)Sr_(0.5)Co_(0.2)Fe_(0.8)O_(3-δ)材料在800 ℃时的热膨胀系数为16.4×10~(-6) K~(-1);SSCF材料的电导率随Fe含量的增加而减小,但在500~800 ℃,其电导率均大于100 S·cm~(-1).此外,Sm_(0.5)Sr_(0.5)Co_(1-x)Fe_xO_(3-δ)材料均表现出良好的催化活性.  相似文献   

9.
采用共沉淀法制备Sr(Fe0.5Nb0.5) O3纳米粉体,两步烧结工艺制备Sr(Fe0.5 Nb0.5) O3陶瓷.用X射线衍射仪(XRD)分析烧结温度、煅烧时间、体系温度、pH值和初始溶液浓度对前驱体粉体物相的影响,用扫描电子显微镜(SEM)分析Sr(Fe0.5 Nb0.5) O3纳米粉体和陶瓷的微观形貌,用阻抗分析仪研究陶瓷的介电性能.结果表明:当体系温度为25℃,pH值为9,初始溶液浓度为0.25 mol/L,在950℃煅烧2h后可获得颗粒分布均匀(~ 50 nm)的Sr(Fe0.5Nb05)O3纳米粉体,用该纳米粉体获得的Sr(Fe0.5Nb0.5)O3陶瓷有优异的频率和温度稳定性及高的介电常数(ε'>2×103)和较低的介电损耗(1 kHz,tanδ=0.086).高的介电常数与陶瓷晶粒和晶界间阻挡层的形成有关,低的介电损耗来源于陶瓷致密的微观结构.  相似文献   

10.
采用柠檬酸盐法合成了具有单一钙钛矿结构的(Nao5Bio5)1-xBaxTiO3(x=0,x=0.04)超细粉料,并研究了陶瓷样品的极化特性、压电性能和铁电性能.研究结果表明,柠檬酸与金属离子的摩尔比(C/M)控制在1.2~1.6、前驱体液的pH值控制在7~9范围内可以得到均匀透明的溶胶和凝胶,凝胶在600℃下热处理1h后可形成单一钙钛矿结构的超细粉料.XRD研究结果表明,x=0和x=0.04时陶瓷样品均为三方钙钛矿结构.极化电压和极化温度对陶瓷样品的压电性能有很大影响,而极化时间对压电性能的影响则不显著.Ba2+的固溶改善了陶瓷样品的铁电性能,有利于材料极化性能和压电性能的提高.与常规固相法制备的同种组成样品相比,柠檬酸盐法制备的(Nao5Bi0.5)1-xBaxTiO3(x=0,x=0.04)陶瓷具有较好的压电性能.  相似文献   

11.
采用固相合成和液相合成两种方法成功制备了Ca9Y0.5La0.5(VO4)7晶体的多晶原料,并采用提拉法生长了尺寸分别为30 mm×33 mm(固相合成多晶原料)和20 mm×27 mm(液相合成多晶原料)的Ca9Y0.5La0.5(VO4)7晶体。测试了该晶体在紫外、可见和近红外区域的透过率,采用Kurtz法测试了晶体的粉末倍频效应。结果表明,采用液相合成原料生长的晶体透过率大于采用固相合成原料生长的晶体约10%。前者粉末倍频效应约为KDP的1.8倍,后者约为KDP的2.5倍。晶体化学腐蚀实验表明采用液相合成原料生长的晶体具有更少的缺陷。采用液相合成方法制备多晶原料有利于提高晶体的光学质量。  相似文献   

12.
Z.Q. He  X.L. Wang  Z.Y. Zhao  B.Y. Quan 《Journal of Non》2008,354(15-16):1683-1689
Glass forming ability, thermal stability and mechanical behavior of (Fe0.5Ni0.5)80?xMoxB20 (x = 0, 2, 4, 6, 8) amorphous alloys were studied by XRD, TEM, SEM, DSC, tensile test, microhardness test and tearing test. The effects of Mo addition on glass formation, strength and ductility of (Fe0.5Ni0.5)80?xMoxB20 amorphous alloys were discussed. The substitution of Mo for Fe and Ni simultaneously causes improvement in glass forming ability and thermal stability, and changes the crystallization process. The tensile fracture strength of amorphous alloy depends on both hardness and ductility; the alloy with high hardness and good ductility simultaneously also has a high tensile fracture strength. The (Fe0.5Ni0.5)78Mo2B20 amorphous alloy exhibits good glass forming ability and the highest tensile fracture strength among (Fe0.5Ni0.5)80?xMoxB20 alloys. Micro-plastic deformation occurred in ductile and brittle amorphous alloys that both show viscous flow characteristics. The mechanical behavior of (Fe0.5Ni0.5)80?xMoxB20 amorphous alloys is related to the average outer shell electron concentration of metal atoms.  相似文献   

13.
本文研究了助烧剂CuO对(Zn0.5Mg0.5)Nb2O6陶瓷的烧结特性、微观结构、相结构及微波介电性能的影响。研究结果表明,助烧剂CuO可以将(Zn0.5Mg0.5)Nb2O6陶瓷的烧结温度降低到950℃。添加3 wt%CuO,在950℃烧结的(Zn0.5Mg0.5)Nb2O6陶瓷密度达到了理论密度的97%以上,介电常数为20,Q×f值为33556 GHz。  相似文献   

14.
采用脉冲激光沉积技术(pulsed laser deposition,PLD),在Pt/Ti/SiO_2/Si基片上制备了La_(0.1)Bi_(0.9)FeO_3(BFO),Bi_(0.5)(Na_(0.85)K_(0.15))0.5TiO_3(BNKT)和BFO/BNKT纳米复合薄膜。结果表明,复合薄膜的铁电特性比单层的BFO、BNKT薄膜有所增强。利用压电力显微镜(piezoresponse force microscopy,PFM)观察到了铁电畴。由于畴结构内部矫顽力分布不均匀,导致极化反转随时间改变,疲劳测试结果也证实了该结论。随着转换周期的增加,极化随之增强。运用PFM测量了纳米级的压电响应,同样证实了BFO/BNKT复合薄膜中的畴反转现象。  相似文献   

15.
利用固相法在1600℃左右制备出LaMgAl11O19和Sr0.5La0.5MgAl11O18.75片体,研究SrxLa1-xMgAl11O19-0.5x的合成反应过程,掺杂元素Sr对合成过程以及材料微观结构的影响。用X射线衍射仪(XRD)及场发射扫描电镜(SEM)表征材料的相结构和微观形貌。结果表明:合成出的材料皆为单相的具有磁铁铅矿晶型的六铝酸盐,材料是由许多片状小板随机排列而成;Sr降低了该材料的最终生成温度。  相似文献   

16.
采用磁控溅射法和脉冲激光沉积法,在SrTiO3(001)衬底上制备了La0.5Sr0.5CoO3(70 nm)/Pb(Zr0.4Ti0.6)O3(70 nm)/La0.5Sr0.5CoO3(70 nm) (LSCO/PZT/LSCO)铁电电容器异质结.X射线衍射结果表明:LSCO和PZT薄膜均为外延结构.在5 V的外加电压下, LSCO/PZT/LSCO电容器具有较低的矫顽电压(0.49 V),较高的剩余极化强度(41.7 μC/cm2 )和较低的漏电流密度(1.97×10-5 A/cm2),LSCO/PZT/LSCO电容器的最大介电常数为1073.漏电流的分析表明:当外加电压小于0.6 V时,电容器满足欧姆导电机制;当外加电压大于0.6 V时,符合空间电荷限制电流(SCLC)导电机制.  相似文献   

17.
采用固相法制备了(1-x)(Na0.9 K0.1)05Bi0.TiO3-xBa0.7Ca0.3 TiO3[(1-x)NKBT-xBCT]无铅压电陶瓷.研究了不同BCT含量(x=0,0.02,0.04,0.05,0.06,0.07)对NKBT陶瓷结构与电性能的影响.结果表明:所有样品均形成纯的钙钛矿结构,体系陶瓷的准同行相界(MPB)位于0.04≤x≤0.06.随着BCT掺量的增加,样品的退极化温度Td逐渐向低温方向移动,压电常数d33和平面机电耦合系数kp均先升高后降低.系列陶瓷电性能较佳:x=0.05时,kp最大,为0.29.当x=0.06时,样品的综合性能较好,其中d33=168 pC/N,kp=0.26,相对介电常数εr=1280,介质损耗tanδ =3.7;,剩余极化强度Pr=37 μC/cm2,矫顽场Ec =18.8 kV/cm.变温电滞回线和介电温谱表明体系陶瓷在Td以上可能存在极性相与非极性相共存.  相似文献   

18.
采用固相反应法制备了系列(1-x)Bi0.5(Na0.82K0.18)0.5TiO3-xBiFeO3(BNKT-BFx)陶瓷.研究了该陶瓷在室温至500 ℃范围内的介电性能.结果表明:该陶瓷的介电温谱与典型弛豫铁电体的特征不同,存在两个介电反常峰和一个介电损耗峰,只在低温介电反常峰温度附近具有明显的介电常数的频率依赖性,居里温度随频率增加基本不变.首次提出了弛豫铁电体分为本征弛豫和非本征弛豫铁电体的理论.通过分析极化前和极化后陶瓷的介电温谱,发现该体系低温介电反常峰温度附近的介电频率依赖性为空间电荷和缺陷偶极子极化引起的非本征弛豫.  相似文献   

19.
采用草酸盐共沉淀法成功合成了Ba(Fe0.5Nb0.5)O3 (BFN)纳米粉体,并采用sol-gel法获得Al2O3改性的BFN复合粉体,于1150℃两步烧结3h获得复合陶瓷,研究了Al2O3添加对BFN陶瓷微观形貌和介电性能的影响.结果表明:BFN · xAl2O3(x=4wt;,6wt;,8wt;)复合粉体颗粒分布均匀,粒径约为50 nm.Al2O3的加入可明显降低陶瓷的烧结温度.Al2 O3添加量为4wt;的复合陶瓷有高的介电常数,较小的介电损耗和良好的温度稳定性.BFN·xAl2O3复合陶瓷中存在的介电弛豫行为符合Arrhenius定律,是一个热激活过程,随着x的增加,复合陶瓷的激活能逐渐增大,这与无定形Al2O3增加了陶瓷的弛豫势垒,使界面极化减弱相关.  相似文献   

20.
A new monomeric manganese(II) complex with 2,2′-bipyridine (bpy), [Mn(bpy)3-] (ClO4)2·0.5(bpy), has been prepared and characterized by X-ray crystallography. The complex crystallizes in the triclinic space group $P\bar 1$ witha=9.535(2),b=13.194(3),c=14.854(3) Å, α=96.50(3), β=107.26(3), γ=91.19(3)°,V=1770.2(7) Å3, andZ=2. The structure comprises discrete [Mn(bpy)3]2+ cations in which the metal atom is coordinated in a highly distorted octahedral environment by three chelate bpy ligands [Mn?N=2.229(3)–2.289(2) Å]. The solvate bpy molecule and a pair of coordinated bpy ligands each from the adjacent cations are arranged in an off-set fashion, showing significant intermolecular stacking interaction with close interplanar contacts ofca. 3.47 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号