首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在95 ℃条件下通过水热方法制备出垂直于ITO基底高密度均匀生长的Mn掺杂ZnO(ZnO:Mn)纳米棒阵列. 纳米棒的直径约为100纳米,长约1微米,且沿[001]方向生长. XRD和XPS结果证实了Mn以替位方式掺杂到纳米棒中,并且掺杂浓度与反应物中的Mn离子浓度似呈正比关系. 所制备的ZnO:Mn纳米棒在室温均有铁磁性,其饱和磁化强度随反应物中Mn离子浓度的提高,饱和磁化强度呈现出先增大,5at.%时达到最大值,0.11 emu/g,然后减小. 铁磁性来源于取代Zn离子的Mn离子之间的铁磁交换相互作用.  相似文献   

2.
Self-assembled Ni-doped zinc oxide (Zn1−xNixO, x = 0.05, 0.10, 0.15, i.e., ZnNiO, nominal composition) nanorod arrays vertically grown on the ZnO seed layer covered glass along [0 0 1] direction were synthesized by hydrothermal method. Their images and structures have been characterized by scan electron microscope (SEM), X-ray diffraction (XRD) and Raman spectra, showing that Ni doping is beneficial to the formation of ZnO nanorods with hexagonal cross section and the enhancement of ZnO crystal quality. X-ray photoemission spectroscopy (XPS) study further demonstrated that Ni atoms were successfully doped into ZnO lattices. The photoluminescence (PL) spectra of ZnNiO samples show near bandedge emission (NBE) peaks at about 380 nm at a low excitation power and the NBE peak position redshifts while its intensity continuously increases with the increase of Ni doping concentration. With the excitation power increasing, the NBE peak redshifts from 380 nm to about 400 nm for ZnNiO nanorod arrays. The NBE mechanisms for ZnNiO nanorod arrays have been discussed, which is helpful for understanding their room temperature ferromagnetisms.  相似文献   

3.
周小红  杨卿  邹军涛  梁淑华 《物理学报》2015,64(8):87803-087803
利用热氧化法在不同参数条件下生长了Ga掺杂范围较宽的ZnO薄膜, 研究了ZnO薄膜的表面微观结构和光致发光性能. 研究表明: Ga以Ga3+存在并掺入ZnO晶格取代Zn2+, Ga的掺入改变了ZnO薄膜中的缺陷类型及浓度、化学计量比、薄膜表面结晶质量, 进而影响了薄膜的光致发光性能. 随着热氧化温度升高, Ga掺杂量增大, ZnO薄膜的晶粒尺寸增大, 尺寸更均一, 紫外光与可见光强度比增大. 随着热氧化时间延长, Ga掺杂量降低, ZnO薄膜的晶粒尺寸均一性变差, 紫外光与可见光强度比减小.  相似文献   

4.
High quality vertical-aligned ZnO nanorod arrays were synthesized by a simple vapor transport process on Si (111) substrate at a low temperature of 520 °C. Field-emission scanning electron microscopy (FESEM) showed the nanorods have a uniform length of about 1 μm with diameters of 40-120 nm. X-ray diffraction (XRD) analysis confirmed that the nanorods are c-axis orientated. Selected area electron diffraction (SAED) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) measurements were adopted to analyze the optical properties of the nanorods both a strong UV emission and a weak deep-level emission were observed. The optical properties of the samples were also tested after annealing in oxygen atmosphere under different temperatures, deep-level related emission was found disappeared at 600 °C. The dependence of the optical properties on the annealing temperatures was also discussed.  相似文献   

5.
Polarization-dependent linear absorption, second-harmonic generation (SHG) and 3rd-order nonlinearities of wellaligned ZnO nanorod arrays have been investigated with ps pulses. The depressed spectral width and the enhanced intensity of reflective SHG along the long axis of ZnO nanorods were observed by using p-polarized pulses, which is explained by the optical confinements. The nonlinear absorption coefficient measured with s-polarization reached the maximum 4.0×10^4cm/GW at the wavelength -750nm, which revealed a large two-photon resonance absorption attributed to the quantum confined exciton when the polarization is vertical to the long axis of ZnO nanorod.  相似文献   

6.
ZnO nanorod arrays were grown on quartz slices in the aqueous solution of zinc acetate and hexamethylenetetramine at 90 °C. Then ZnO:Mg shells were epitaxially grown on the nanorods to form core/shell structures in the aqueous solution of zinc acetate, magnesium acetate and hexamethylenetetramine at the same temperature. Effects of the shells and UV laser beam irradiation on the crystal structure and photoluminescence properties of ZnO nanorods were studied. ZnO:Mg shells suppress the green emission and enhance the UV emission intensity of the nanorods by 38 times. Enhancement of the UV emission depends on the Mg content in the shells. Short time UV laser beam irradiation could improve ZnO nanorod emission efficiently. The UV emission intensity of ZnO nanorods is enhanced by 71 times by capping and subsequent UV laser beam irradiation.  相似文献   

7.
Mn-doped ZnO nanorods were synthesized from aqueous solutions of zinc nitrate hexahydrate, manganese nitrate and methenamine by the chemical solution deposition method (CBD). Their microstructures, morphologies and optical properties were studied in detail. X-ray diffraction (XRD) results illustrated that all the diffraction peaks can be indexed to ZnO with the hexagonal wurtzite structure. Scanning electron microscope (SEM) results showed that the average diameter of Mn-doped ZnO nanorods was larger than that of the undoped one. Photoluminescence (PL) spectra indicated that manganese doping suppressed the emission intensity and caused the blue shift of UV emission position compared with the undoped ZnO nanorods. In the Raman spectrum of Mn-doped ZnO nanorods, an additional mode at about 525 cm−1 appeared which was significantly enhanced and broadened with the increase of Mn doping concentration.  相似文献   

8.
Shape controllable synthesis of ZnO nanorod arrays via vapor phase growth   总被引:4,自引:0,他引:4  
ZnO nanorod arrays with peculiar morphologies were synthesized on (111)-oriented Si substrate and glass via a vapor phase growth. The morphology of the individual nanorod can be flat-headed bottle-like, and needle-like, which depends on the deposition positions relative to the source materials in the presence of a controlling element Se. In addition, the arrays of all the three morphologies exhibit good alignment and high coverage. This fabrication technique can be also used to direct the controllable growth of other nanomaterials with similar morphologies.  相似文献   

9.
Oriented ZnO nanorod arrays were successfully prepared on transparent conductive substrates by seed-layer-free electrochemical deposition in solution of Zn(NO3)2 at a low temperature of 70 °C without using any catalysts, additives, and additional seed crystals. The effects of the Zn(NO3)2 concentration, deposition time and applied current on the localized nanorod arrays are investigated. X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) were used to characterize the structures and the morphologies of ZnO nanorod arrays. The heights and diameters of ZnO nanorods can be tuned by controlling the electrodeposition parameters.  相似文献   

10.
In this study, we have investigated the antifungal activity of ZnO nanorods prepared by the chemical solution method against Candida albicans. In the study, Zinc oxide nanorods have been deposited on glass substrates using the chemical solution method. The as-grown samples are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). X-ray diffraction (XRD) showed zinc oxide nanorods grown in (0 0 2) orientation. The antifungal results indicated that ZnO nanorod arrays exhibit stable properties after two months and play an important role in the growth inhibitory of Candida albicans.  相似文献   

11.
The angular dependent photoluminescence from ZnO nanorod array was investigated. Variations in the excitation and detection angles provided to reveal a blue shift and then splitting of a near-band edge emission into two bands. It is suggested that the observed phenomenon is caused by an inhomogeneous distribution of the emission along the nanorod length. The spatially resolved cathodoluminescence measurements confirmed that indeed the emission along the length of the nanorod is inhomogeneous and the top and bottom parts of the nanorod exhibit different emission spectra.  相似文献   

12.
Chemical spray pyrolysis was applied to grow ZnO nanorod arrays from zinc chloride solutions with pH=2 and 5 on glass/ITO substrate at 480 and 550 °C. The obtained structures were characterized by their morphological, electrical and PL properties. According to SEM, deposition of acidic solutions retards coalescence of the growing crystals. The charge carrier density in ZnO nanorods was determined from the C-V characteristics of ZnO/Hg Schottky barrier. Carrier densities ∼1015 cm−3 and slightly above 1016 cm−3 were recorded for ZnO deposited at 550 and 480 °C, respectively. According to PL studies, intense UV-emission is characteristic of ZnO independent of growth temperature, the concentration of oxygen vacancy related defects is lower in ZnO nanorods deposited at 550 °C. Solution pH has no influence on carrier density and PL properties.  相似文献   

13.
采用两步法,即先用磁控溅射在Si(100)表面生长一层ZnO籽晶层、再利用液相法制备空间取向高度一致的ZnO纳米棒阵列.用扫描电子显微镜、X射线衍射、高分辨透射电子显微镜和选区电子衍射对样品形貌和结构特征进行了表征.结果表明,ZnO纳米棒具有垂直于衬底沿c轴择优生长和空间取向高度一致的特性和比较大的长径比,X射线衍射的(XRD)(0002)峰半高宽只有0.06°,选区电子衍射也显示了优异的单晶特性.光致发光谱表明ZnO纳米棒具有非常强的紫外本征发光和非常弱的杂质或缺陷发光特性. 关键词: ZnO纳米棒阵列 ZnO籽晶层 两步法 液相生长  相似文献   

14.
ZnO nanorod arrays (ZNAs) were prepared via a two-step seeding and solution hydrothermal growth process. Effects of preparing parameters such as seed layer, colloid concentration, substrate and precursor concentration, on the alignment control of ZNAs were systematically investigated. The deviation angle of ZnO nanorods was measured to evaluate the alignment of arrays. Results show that seed layer not only controls the vertical orientation of ZNAs, but also the compactness of ZNAs. Altering colloid concentration and substrate can influence the microstructure of ZnO seed layer and affect the ordered alignment of ZNAs. The precursor concentration has an insignificant effect on the alignment of ZNAs but has great impact on the morphology of ZNAs. Alignment-controlled and well-aligned ZnO nanorods with different diameter and aspect ratio can be obtained by properly controlling the preparing parameters. A growth mechanism was proposed for the growth of ZnO nanorods.  相似文献   

15.
A simple template-directed wet chemistry route based on traditional thermal decomposition technique has been developed for the preparation of high-density, ordered ZnO nanowire arrays. The fabrication was performed at relative low temperature without involving complex procedures, sophisticated equipment and rigorous experiment conditions, thereby providing a straightforward and mild method to produce metal/metal oxide ordered nanostructures. The nanowire array system was evaluated by SEM, XRD, TEM and PL. A stable luminescence at 425 nm was present.  相似文献   

16.
Pencil-like ZnO microrods was synthesized via a simple solvothermal process in an aqueous solution of ethylenediamine and ethanolamine. The as-prepared ZnO was characterized by X-ray powder diffraction, field-emission scanning electron microscopy, room temperature photoluminescence spectra and UV–vis absorption spectra. The results indicated that ZnO microrods had the length in the range of 1.3–25 μm. The photocatalytic activity was studied by degradation of methylene blue (MB) aqueous solution, which showed that the as-prepared ZnO microrods possessed a high photocatalytic activity. The formation mechanism of the pencil-like ZnO was also investigated based on the experimental results.  相似文献   

17.
Lifetime measurements have been carried out for ZnO doped with killer impurities (Fe, Co or Ni) having doping concentrations 0.05 to 1.00% by weight using a pulsed UV laser (nitrogen laser) as the excitation source having a short pulse width and a high photon flux density. The high photon flux density of the laser is very useful to excite the short-lived shallow trapping states which otherwise would be impossible to excite. Fast photoluminescence emission in the microsecond time domain has been obtained due to killer impurities at room temperature. The effect of killer dopants as well as the effect of their concentrations on lifetime values has been observed. Other optical parameters such as trap depth and decay constant are also reported in the present context. Lifetime values are found to be in the microsecond time domain and a reverse trend is obtained with increase in concentration of killer impurities. PACS 78.55.-m; 78.55.Ap; 78.66.Db; 78.66.Hf  相似文献   

18.
采用基于密度泛函理论(DFT)框架下广义梯度近似(GGA)的PBE平面波超软赝势方法,计算了本征ZnO,Al掺杂ZnO(ZnAlO)和Ga掺杂ZnO(ZnGaO)的能带结构、态密度、复介电函数和复电导率. 其中Al或Ga是以替位杂质的形式进入ZnO晶格. 计算结果表明纤锌矿型ZnO,ZnAlO和ZnGaO都是直接带隙半导体材料,掺杂后ZnO的带隙变小,且ZnAlO的带隙略大于ZnGaO. 掺杂后ZnO的电子结构发生变化,费米能级由本征态时位于价带顶上移进入导带,ZnO表现为n型掺杂半导体材料,掺杂后在导带底出现大量由掺杂原子贡献的自由载流子—电子,明显提高了电导率和介电函数,改善了ZnO的导电性能,并且ZnAlO的导电性能要略好于ZnGaO.  相似文献   

19.
采用基于密度泛函理论(DFT)框架下广义梯度近似(GGA)的PBE平面波超软赝势方法,计算了本征ZnO,Al掺杂ZnO(ZnAlO)和Ga掺杂ZnO(ZnGaO)的能带结构、态密度、复介电函数和复电导率. 其中Al或Ga是以替位杂质的形式进入ZnO晶格. 计算结果表明纤锌矿型ZnO,ZnAlO和ZnGaO都是直接带隙半导体材料,掺杂后ZnO的带隙变小,且ZnAlO的带隙略大于ZnGaO. 掺杂后ZnO的电子结构发生变化,费米能级由本征态时位于价带顶上移进入导带,ZnO表现为n型掺杂半导体材料,掺杂后在导带底出现大量由掺杂原子贡献的自由载流子—电子,明显提高了电导率和介电函数,改善了ZnO的导电性能,并且ZnAlO的导电性能要略好于ZnGaO.  相似文献   

20.
Aligned ZnO nanorod arrays were fabricated by chemical solution deposition based on Si substrate which was spin coated with ZnO colloid as nucleation seeds. Their microstructures were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The results indicated that ZnO nanorods nucleated and grew vertically on Si substrates along the [0 0 1] direction with single-crystalline structure. The diameter of ZnO nanorods was greatly affected by the grain size of ZnO seeds. Room-temperature photoluminescence of nanorods has a strong emission band at about 384 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号