首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
White light luminescence from annealed thin ZnO deposited porous silicon   总被引:1,自引:0,他引:1  
In this study, photoluminescence (PL) properties of annealed ZnO thin films deposited onto a porous silicon (PS) surface by rf-sputtering were investigated. A huge blue shift of luminescence from the ZnO deposited onto the PS surface and a broadband luminescence (white luminescence) across most of the visible spectrum were obtained after the heat treatment at 950 °C in air. The results of Fourier Transform Infrared Spectroscopy (FTIR) analysis suggested that the porous silicon surface was oxidized after ZnO deposition and the broadband luminescence was due to the conversion of Si-H bonds to Si-O-Si bonds on the PS surface. The underlying mechanisms of the broadband PL were discussed by using oxygen-bonding model for the PS and native defects model for ZnO. The experimental results suggested that the heat treatment provides a relatively easy way to achieve white luminescence from thin ZnO deposited porous silicon.  相似文献   

2.
Parshina  L. S.  Novodvorsky  O. A.  Panchenko  V. Ya.  Khramova  O. D.  Cherebilo  Ye. A.  Lotin  A. A.  Wenzel  C.  Trumpaicka  N.  Bartha  J. W. 《Laser Physics》2011,21(4):790-795
The production of n- and p-type high-quality film structures is a foreground task in tackling the problem of growing the light-emitting p-n junctions based on zinc oxide. The ZnO:N and ZnO:P thin-film samples are produced from ceramic targets using the pulsed laser deposition. Zn3N2, MgO, and Zn3P2 are introduced in the ZnO ceramic targets for the fabrication of the p-type ZnO films. Gases O2 and N2O are used as buffer gases. The thermal annealing of the ZnO films is employed. The resistance and photoluminescence (PL) spectra of the ZnO films are measured prior to and after annealing. The dependence of the ZnO PL peak amplitude and position prior to and after annealing on the level of doping with nitrogen and phosphorus is established. The PL characteristics of the films are studied at cw optical excitation using a He-Cd laser with a radiation wavelength of 325 nm. The PL spectra in the interval 300–700 nm are recorded by an HR4000 Ocean Optics spectrometer in the temperature range 10–400 K. The effect of the conditions for the film deposition on the PL spectra is analyzed. The effect of the N- and P-doping level of the ZnO films on the PL intensity of the films and the position of the PL bands in the UV region is investigated. The short-wavelength (250–400 nm) transmission spectra of the ZnO:P films are measured. The effect of the P-doping level on the band gap of the ZnO films is studied.  相似文献   

3.
《Composite Interfaces》2013,20(8):733-742
Zinc thin films were deposited onto porous silicon (PSi) substrates by dc sputtering using a Zn target. These films were then annealed under flowing (6 l/min) oxygen gas environment in the furnace at 600°C for 2 h. Porous silicon is used as an intermediate layer between silicon and ZnO films and it provides a large area composed of an array of voids. The PSi samples were prepared using photoelectrochemical method on n-type silicon wafer with (111) and (100) orientation. To prepare porous structures, the samples were dipped into a mixture of HF:ethanol (1:1) for 5 min with current densities of 50 mA/cm2, and subjected to external illumination with a 500 W UV lamp. The surface morphology and the nanorod structure of the ZnO films were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). We synthesized the ZnO nanorods with diameter of 80–100 nm without any catalysts or templates. The XRD pattern confirmed that the ZnO nanorods were of polycrystalline structure. The surface-related optical properties have been investigated by photoluminescence (PL) and Raman measurements at room temperature. Micro-Raman results showed that A1(LO) of hexagonal ZnO/Si(111) and ZnO/Si(100) have been observed at 522 cm–1 and 530 cm–1, respectively. PL spectra peaks are clearly visible at 366 cm–1 and 368 cm–1 for ZnO film grown on porous Si(111) and Si(100) substrates, respectively. The PL spectral peak position in ZnO nanorods on porous silicon is blue-shifted with respect to that in unstrained ZnO (381 nm).  相似文献   

4.
The photoluminescence and reflectance of porous silicon (PS) with and without hydrocarbon (CHx) deposition fabricated by plasma enhanced chemical vapour deposition (PECVD) technique have been investigated. The PS samples were then, annealed at temperatures between 200 and 800 °C. The influence of thermal annealing on optical properties of the hydrocarbon layer/porous silicon/silicon structure (CHx/PS/Si) was studied by means of photoluminescence (PL) measurements, reflectivity and ellipsometry spectroscopy. The composition of the PS surface was monitored by transmission Fourier transform infrared (FTIR) spectroscopy. Photoluminescence and reflectance measurements were carried out before and after annealing on the carbonized samples for wavelengths between 250 and 1200 nm. A reduction of the reflectance in the ultraviolet region of the spectrum was observed for the hydrocarbon deposited polished silicon samples but an opposite behaviour was found in the case of the CHx/PS ones. From the comparison of the photoluminescence and reflectance spectra, it was found that most of the contribution of the PL in the porous silicon came from its upper interface. The PL and reflectance spectra were found to be opposite to one another. Increasing the annealing temperature reduced the PL intensity and an increase in the ultraviolet reflectance was observed. These observations, consistent with a surface dominated emission process, suggest that the surface state of the PS is the principal determinant of the PL spectrum and the PL efficiency.  相似文献   

5.
《Composite Interfaces》2013,20(5):441-448
Zinc oxide thin films have been deposited onto porous silicon (PSi) substrates at high growth rates by radio frequency (RF) sputtering using a ZnO target. The advantages of the porous Si template are economical and it provides a rigid structural material. Porous silicon is applied as an intermediate layer between silicon and ZnO films and it contributed a large area composed of an array of voids. The nanoporous silicon samples were adapted by photo electrochemical (PEC) etching technique on n-type silicon wafer with (111) and (100) orientation. Micro-Raman and photoluminescence (PL) spectroscopy are powerful and non-destructive optical tools to study vibrational and optical properties of ZnO nanostructures. Both the Raman and PL measurements were also operated at room temperature. Micro-Raman results showed that the A1(LO) of hexagonal ZnO/Si(111) and ZnO/Si(100) have been observed at around 522 and 530 cm–1, re- spectively. PL spectra peaks are distinctly apparent at 366 and 368 cm–1 for ZnO film grown on porous Si(111) and Si(100) substrates, respectively. The peak luminescence energy in nanocrystalline ZnO on porous silicon is blue-shifted with regard to that in bulk ZnO (381 nm). The Raman and PL spectra pointed to oxygen vacancies or Zn interstitials which are responsible for the green emission in the nanocrystalline ZnO.  相似文献   

6.
Layers of porous silicon (PS), multilayered ZnO films, and heterostructures based on them are obtained. The surface morphology, chemical and phase composition of the PS layers and ZnO films, and the transverse cleavage of ZnO–PS nanocomposite, are investigated via energy-dispersive X-ray spectral analysis (EDX), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The current–voltage characteristics of Al/Ag/p-Si(100)/PS/ZnO/Ag/Al and Al/Ag/p-Si(100)/PS/ZnO/SiC/Ag/Al heterostructures are studied.  相似文献   

7.
《Composite Interfaces》2013,20(7):627-632
Porous tin oxide was prepared on silicon(111) substrate by the sol–gel route. Then, the samples were dried in air at 600°C for 30 min in an electric furnace. Scanning electron microscope (SEM) images indicated the high density of the pores. Circular microvoids formed by the rigid shaped microarray network of 200–300 nm sizes are clearly seen in the plan view SEM image. The high homogeneity and uniformity of the porous region could also be visualized by this easy method. Nanocrystalline zinc oxide (ZnO) thin films have been deposited onto porous SnO2substrates at high growth rates by radio frequency (RF) sputtering using a ZnO target. The surface morphology of the nanocrystalline ZnO films was characterized by scanning electron microscope (SEM). Photoluminescence (PL) spectroscopy is a powerful, contactless and excellent nondestructive optical tool to study the acceptor binding energy of ZnO nanostructures. The PL measurements were also operated at room temperature. The peak luminescence energy in nanocrystalline ZnO on porous SnO2 is blue-shifted with regard to that in bulk ZnO (381 nm). PL spectra peaks are distinctly apparent at 375 nm for ZnO film grown on porous SnO2/Si(111) substrates.  相似文献   

8.
Cai-feng Wang  Bo Hu  Hou-hui Yi 《Optik》2012,123(12):1040-1043
ZnS and ZnO films were prepared on porous silicon (PS) substrates with the same porosity by pulsed laser deposition (PLD), and the structural, optical and electrical properties of ZnS and ZnO films on PS were investigated at room temperature by X-ray diffraction (XRD), scanning electron microscope (SEM), optical absorption measurement, photoluminescence (PL) and I–V characteristic studies. The prepared ZnS was obtained in the cubic phase along β-ZnS (1 1 1) orientation which showed a perfect match with the earlier report while ZnO films were obtained in c-axis orientation. There appeared some cracks in the surface of ZnS and ZnO films due to the roughness of PS substrates. Luminescence studies of ZnS/PS and ZnO/PS composites indicated room temperature emission in a broad, intense, visible photoluminescence band, which cover the blue emission to red emission, exhibiting intensively white light emission. Based on the I–V characteristic, ZnS/PS heterojunction exhibited the rectifying junction behavior, while the I–V characteristic of ZnO/PS heterostructure was different from that of the common diode, whose reverse current was not saturated.  相似文献   

9.
The annealing effects of sapphire substrate on the quality of epitaxial ZnO films grown by metalorganic chemical vapor deposition (MOCVD) were studied. The atomic steps formed on (0 0 0 1) sapphire (α-Al2O3) substrate surface by annealing at high temperature was analyzed by atomic force microscopy (AFM). The annealing effects of sapphire substrate on the ZnO films were examined by X-ray diffraction (XRD), AFM and photoluminescence (PL) measurements. Experimental results indicate that the film quality is strongly affected by annealing treatment of the sapphire substrate surface. The optimum annealing temperature of sapphire substrates is given.  相似文献   

10.
ZnS films were prepared by pulsed laser deposition (PLD) on porous silicon (PS) substrates. This paper investigates the effect of annealing temperature on the structural, morphological, optical and electrical properties of ZnS/PS composites by x-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) and I--V characteristics. It is found that the ZnS films deposited on PS substrates were grown in preferred orientation along β-ZnS (111) direction, and the intensity of diffraction peak increases with increasing annealing temperature, which is attributed to the grain growth and the enhancement of crystallinity of ZnS films. The smooth and uniform surface of the as-prepared ZnS/PS composite becomes rougher through annealing treatment, which is related to grain growth at the higher annealing temperature. With the increase of annealing temperature, the intensity of self-activated luminescence of ZnS increases, while the luminescence intensity of PS decreases, and a new green emission located around 550~nm appeared in the PL spectra of ZnS/PS composites which is ascribed to the defect-center luminescence of ZnS. The I--V characteristics of ZnS/PS heterojunctions exhibited rectifying behavior, and the forward current increases with increasing annealing temperature.  相似文献   

11.
ZnS films were prepared by pulsed laser deposition (PLD) on porous silicon (PS) substrates. This paper investigates the effect of annealing temperature on the structural, morphological, optical and electrical properties of ZnS/PS composites by x-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) and I–V characteristics. It is found that the ZnS films deposited on PS substrates were grown in preferred orientation along β-ZnS (111) direction, and the intensity of diflraction peak increases with increasing annealing temperature, which is attributed to the grain growth and the enhancement of crystallinity of ZnS films. The smooth and uniform surface of the as-prepared ZnS/PS composite becomes rougher through annealing treatment, which is related to grain growth at the higher annealing temperature. With the increase of annealing temperature,the intensity of self-activated luminescence of ZnS increases, while the luminescence intensity of PS decreases, and a new green emission located around 550 nm appeared in the PL spectra of ZnS/PS composites which is ascribed to the defect-center luminescence of ZnS. The I-V characteristics of ZnS/PS heterojunctions exhibited rectifying behavior, and the forward current increases with increasing annealing temperature.  相似文献   

12.
Samples of p-type ZnO:N films were prepared on glass substrates by thermal oxidation of Zn3N2 precursor, which was produced by reactive magnetron sputtering with a metallic zinc target in Ar/N2 working gas. The microstructures and the electrical and optical properties of the samples were systematically investigated as a function of the annealing temperature. The results indicate that the annealing temperature has strong effects on the conductivity and photoluminescence (PL) properties of the obtained ZnO:N films. With an annealing temperature of 500 °C in oxygen flux, ZnO:N samples show the best p-type characteristics. The doping mechanism and the doping efficiency are briefly discussed based on the experimental results.  相似文献   

13.
采用射频磁控溅射法在Si衬底上制备了高c轴择优取向的ZnO薄膜,研究了退火对ZnO薄膜的晶粒尺度和发光光谱的影响。XRD结果显示退火可以改善ZnO薄膜的结构特性,PL谱结果显示退火对ZnO薄膜的发光强度产生很大影响。  相似文献   

14.
A ZnO thin film was successfully synthesized on glass, flat surface and textured silicon substrates by chemical spray deposition. The textured silicon substrate was carried out using two solutions (NaOH/IPA and Na2CO3). Textured with Na2CO3 solution, the sample surface exhibits uniform pyramids with an average height of 5 μm. The properties and morphology of ZnO films were investigated. X-ray diffraction (XRD) spectra revealed a preferred orientation of the ZnO nanocrystalline film along the c-axis where the low value of the tensile strain 0.26% was obtained. SEM images show that all films display a granular, polycrystalline morphology. The morphology of the ZnO layers depends dramatically on the substrate used and follows the contours of the pyramids on the substrate surface. The average reflectance of the textured surface was found to be around 13% and it decreases dramatically to 2.57% after deposition of a ZnO antireflection coating. FT-IR peaks arising from the bonding between Zn–O are clearly represented using a silicon textured surface. A very intense photoluminescence (PL) emission peak is observed for ZnO/textured Si, revealing the good quality of the layer. The PL peak at 380.5 nm (UV emission) and the high-intensity PL peak at 427.5 nm are observed and a high luminescence occurs when using a textured Si substrate.  相似文献   

15.
Au/SiO2 nanocomposite films were fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering technique and annealing at different temperature for 20 min (mode A) and at 1000 °C for different annealing time (mode B). The nanocomposite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL). SEM results demonstrate that the size of Au crystallites in mode A first increases and then decreases, on increasing annealing temperature, according to the results of XRD spectra. Analysis of PL spectra in mode B shows that the intensity of the emission peak at 440 nm and 523 nm early increases and late decreases, with increasing annealing time at 1000 °C. The origin of the emission peak at around 440 nm was related to the size and quantity of Au particles and one of the emission peak at around 523 nm was related to the nanostructure of films in agreement with SEM imagines. Experimental results indicated that morphology, microstructure and luminescence of Au/SiO2 nanocomposite films showed close affinity with annealing temperature and annealing time.  相似文献   

16.
A porous silicon (PS) layer was prepared by photoelectrochemical etching (PECE), and a zinc oxide (ZnO) film was deposited on a PS layer using a radio frequency (RF) sputtering system. The surface morphology of the PS and ZnO/PS layers was characterised using scanning electron microscopy (SEM). Nano-pores were produced in the PS layer with an average diameter of 5.7 nm, which increased the porosity to 91%. X-ray diffraction (XRD) of the ZnO/PS layers shows that the ZnO film is highly oriented along the c-axis perpendicular to the PS layer. The average crystallite size of the PS and ZnO/PS layers are 17.06 and 17.94 nm, respectively. The photoluminescence (PL) emission spectra of the ZnO/PS layers present three emission peaks, two peaks located at 387.5 and 605 nm due to the ZnO nanocrystalline film and a third located at 637.5 nm due to nanocrystalline PS. Raman measurements of the ZnO/PS layers were performed at room temperature (RT) and indicate that a high-quality ZnO nanocrystalline film was formed. Optical reflectance for all the layers was obtained using an optical reflectometer. The lowest effective reflectance was obtained for the ZnO/PS layers. The fabrication of crystalline silicon (c-Si) solar cells based on the ZnO/PS anti-reflection coating (ARC) layers was performed. The IV characteristics of the solar cells were studied under 100 mW/cm2 illumination conditions. The ZnO/PS layers were found to be an excellent ARC and to exhibit exceptional light-trapping at wavelengths ranging from 400 to 1000 nm, which led to a high efficiency of the c-Si solar cell of 18.15%. The ZnO/PS ARC layers enhance and increase the efficiency of the c-Si solar cell. In this paper, the fabrication processes of the c-Si solar cell with ZnO/PS ARC layers are an attractive and promising technique to produce high-efficiency and low-cost of c-Si solar cells.  相似文献   

17.
The Ge/ZnO multilayer films have been prepared by rf magnetron sputtering. The effects of annealing on the microstructure and photoluminescence properties of the multilayers have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectrometry and photoluminescence (PL) spectrometry. The investigation of structural properties indicates that Zn2GeO4 has been formed with (2 2 0) texture and Zn deficiency from Ge/ZnO multilayer films in the process of annealing. However, lower Zn/Ge ratio can be improved by annealing. The annealed multilayers show three main emission bands at 532, 700, and 761 nm, which originate from the transition between oxygen vacancy () and Zn vacancies (VZn), the radiative recombination of quantum-confined excitons (QCE) in Ge nanocrystals, and the optical transition in the GeO color centers, respectively. Finally, the fabrication of thin film Zn2GeO4 from Ge/ZnO multilayer films by annealing at low temperature provides another approach to prepare the green-emitting oxide phosphor film:Zn2GeO4:Mn.  相似文献   

18.
ZnO thin films were first prepared on Si(111) substrates using a radio frequency magnetron sputtering system. Then the as-grown ZnO films were annealed in oxygen ambient at temperatures of 700, 800, 900, and 1000°C , respectively. The morphologies of ZnO films were studied by an atom force microscope (AFM). Subsequently, GaN epilayers about 500 nm thick were deposited on the ZnO buffer layers. The GaN/ZnO films were annealed in NH3 ambient at 900°C. The microstructure, morphology and optical properties of GaN films were studied by x-ray diffraction (XRD), AFM, scanning electron microscopy (SEM) and photoluminescence (PL). The results are shown, their properties having been investigated particularly as a function of the ZnO layers. For better growth of the GaN films, the optimal annealing temperature of the ZnO buffer layers was 900°C.  相似文献   

19.
高浓度Er/Yb共掺ZnO薄膜的结构及室温光致发光特性   总被引:3,自引:0,他引:3  
采用射频磁控溅射方法制备了Er/Yb共掺ZnO薄膜,研究了退火处理对高浓度Er/Yb共掺ZnO薄膜的结构演化和光致发光(PL)特性的影响。X射线衍射分析结果表明:Er/Yb掺杂导致ZnO薄膜的晶粒细化及择优取向性消失,ZnO晶粒随退火温度的增加而逐渐长大。900℃退火时,出现Er3 、Yb3 偏析,退火温度高于1000℃时,薄膜与基体间发生了界面反应,1200℃时,ZnO完全转变为Zn2SiO4相。光致发光测量结果表明:高于900℃退火处理后,Er/Yb共掺ZnO薄膜在1540 nm附近具有明显的光致发光,发光强度在退火温度为1050℃时达到最大值;光致发光光谱呈现典型的晶体基质中Er3 离子发光光谱所具有的明锐多峰结构特征。此外,探讨了薄膜结构演化及其对光致发光光谱的影响。  相似文献   

20.
As grown ZnO:Si nanocomposites of different compositional ratios were fabricated by thermal evaporation techniques. These films were subjected to post-deposition annealing under high vacuum at a temperature of 250 °C for 90 min. The photoluminescence (PL) spectra of annealed samples have shown marked improvements both in terms of intensity and broadening. Structural and Raman analyses show formation of a Zn–Si–O shell around ZnO nanoclusters wherein on heating Zn2SiO4 compound forms resulting in huge UV, orange and red peaks at 310, 570 and 640 nm in PL. The new emissions due to Zn2SiO4 completes white light spectrum. The study not only suggests that 1:2 ratio is the best suited for material manipulation but also shows process at the interface of ZnO nanoclusters and silicon matrix leads to new PL emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号