共查询到20条相似文献,搜索用时 11 毫秒
1.
Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl methylsulfoxide), and the thermally sensitive poly(N-acryloylpyrrolidine). Aqueous micellar solutions of the block copolymers were prepared and characterized by static and dynamic light scattering analysis (DLS and SLS). No critical micelle concentration could be detected. The micellization was thermodynamically favored, although kinetically slow, exhibiting a marked dependence on the preparation conditions. The polymers formed micelles with a hydrodynamic diameter from 20 to 100 nm, which were stable upon dilution. The micellar size was correlated with the composition of the block copolymers and their overall molar mass. The micelles formed with the two most hydrophilic blocks were particularly stable upon temperature cycles, whereas the thermally sensitive poly(N-acryloylpyrrolidine) block showed a temperature-induced precipitation. According to combined SLS and DLS analysis, the micelles exhibited an elongated shape such as rods or worms. It should be noted that the block copolymers with the most hydrophilic poly(sulfoxide) block formed inverse micelles in certain organic solvents. 相似文献
2.
Block copolymers (BCPs) are important precursors to produce membranes with well‐defined porosities. However, it remains challenging to prepare robust and affordable BCP‐based membranes. In this work, cheap commodity styrene‐butadiene‐styrene (SBS) elastic triblock copolymers are mixed with polystyrene‐block‐poly (2‐vinylpyridine) (SV) block copolymers in solutions, leading to macroscopically stable blend films upon casting because of the compatibilizer effect of PS existing in both copolymers. By soaking the blend films in ethanol, the microdomains of poly(2‐vinylpyridine) are selectively swollen and cavitated upon drying, resulting in a hierarchical structure with perforated SV phases interwoven with the SBS phases. The blend membranes with 30% SBS exhibit improved water permeability and mechanical robustness due to the presence of elastic SBS compared to neat SV membranes; meanwhile, the rejections of the blend membranes remain largely unchanged. Moreover, the blend membranes exhibit a pH‐responsive function, and homoporous SV regions are obtained by pre‐aligning the SV phases. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1617–1625 相似文献
3.
Junshan Wang Jonathan P. DeRocher Lifeng Wu Frank S. Bates E.L. Cussler 《Journal of membrane science》2006,270(1-2):13-21
The permeabilities of helium, nitrogen, and oxygen across lamellar block copolymers can be accurately estimated from the properties of the glassy and rubbery blocks. The copolymers tested include poly(styrene-b-isoprene-b-styrene), poly(styrene-b-butadience-b-styrene), and poly(lactide-b-isoprene-b-lactide). The results show improvements in barrier properties that tend to be larger than those expected from the resistances of lamellae in series. These increases are not as large as those achieved with impermeable fillers like mica and clay. The changes in film elastic modulus caused by glassy lamellae are also discussed. 相似文献
4.
Chengzhong Cui Edward M. Bonder Frieder Jkle 《Journal of polymer science. Part A, Polymer chemistry》2009,47(23):6612-6618
A new class of amphiphilic organometallic block copolymers with cationic organoboron pendant groups was developed. Selective replacement of one of the bromine substitutents on each boryl group of the block copolymer PSBBr2‐b‐PS with an organometallic reagent ArM (ArM = 2,4,6‐trimethylphenyl copper, 4‐t‐butylphenyltrimethyl tin) followed by treatment with 2,2′‐bipyridine gave the novel block copolymers [ 3Ar ](Br)n as light yellow solid materials that show good stability in air and moisture and high solubility in most organic solvents. Their structure and composition were confirmed by multinuclear NMR, GPC, and elemental analysis. Highly regular micellar aggregates form in block‐selective solvents (e.g., MeOH, toluene) as demonstrated by 1H NMR, dynamic light scattering, and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6612–6618, 2009 相似文献
5.
Target drug delivery methodology is becoming increasingly important to overcome the shortcomings of conventional drug delivery absorption method. It improves the action time with uniform distribution and poses minimum side effects, but is usually difficult to design to achieve the desire results. Economically favorable, environment friendly, multifunctional, and easy to design, hybrid nanomaterials have demonstrated their enormous potential as target drug delivery vehicles. A combination of both micelles and nanoparticles makes them fine target delivery vehicles in a variety of biological applications where precision is primarily required to achieve the desired results as in the case of cytotoxicity of cancer cells, chemotherapy, and computed tomography guided radiation therapy. 相似文献
6.
Swelling of block copolymers by selective solvents has emerged as an extremely simple and efficient process to produce nanoporous materials with well‐controlled porosities. However, the role of the swelling agents in this pore‐making process remains to be elucidated. Here we investigate the evolution of morphology, thickness, and surface chemistry of thin films of polystyrene‐block‐poly (2‐vinyl pyridine) (PS‐b‐P2VP) soaked in a series of alcohols with changing carbon atoms and hydroxyl groups in their molecules. It is found that, in addition to a strong affinity to the dispersed P2VP microdomains, the swelling agents should also have a moderate swelling effect to PS to allow appropriate plastic deformation of the PS matrix. Monohydric alcohols with longer aliphatic chains exhibit stronger ability to induce the pore formation and a remarkable increase in film thickness is associated with the pore formation. High‐carbon alcohols including n‐propanol, n‐butanol, and n‐hexanol produce cylindrical micelles upon prolonged exposure for their strong affinity toward the PS matrix. In contrast, methanol and polyhydric alcohols including glycol and glycerol show very limited effect to swell the copolymer films as their affinity to the PS matrix is low; however, they also evidently induce the surface segregation of P2VP blocks. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 926–933 相似文献
7.
Xiuli Zhuang Chunsheng Xiao Kenichi Oyaizu Natsuru Chikushi Xuesi Chen Hiroyuki Nishide 《Journal of polymer science. Part A, Polymer chemistry》2010,48(23):5404-5410
We present here the synthesis of two kinds of amphiphilic block copolymers, a diblock copolymer MPEG‐b‐PTAm and a triblock copolymer MPEG‐b‐PLA‐b‐PTAm, which can self‐assemble into micelles with nitroxyl radicals‐containing PTAm segment in the core. The structure of the block copolymers was characterized by 1H NMR and GPC. Dynamic laser light scattering and transmission electron microscopy were used to study the micellar behavior of the two block copolymers in aqueous solution. The micelles carrying nitroxyl radicals in the core can generate electron paramagnetic resonance, which is stable for a period of time up to 8 min even in the presence of reducing reagent such as ascorbic acid. The enhanced stability against the reducing agent was ascribed to the inaccessibility of the nitroxyl radical core placed in the interior of the micelles. Combined with the biocompatibility, these micelles were promising to be used as the EPR probes for bioimaging in vivo. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
8.
Ross A. Wylie Michael D. Dimitriou Helen Tran Richard Hoogenboom Ulrich S. Schubert Craig J. Hawker Luis M. Campos Luke A. Connal 《Journal of polymer science. Part A, Polymer chemistry》2016,54(6):750-757
Simple self‐assembly techniques to fabricate non‐spherical polymer particles, where surface composition and shape can be tuned through temperature and the choice of non‐solvents was developed. A series of amphiphilic polystyrene‐b‐poly(2‐ethyl‐2‐oxazoline) block copolymers were prepared and through solvent exchange techniques using varying non‐solvent composition a range of non‐spherical particles were formed. Faceted phase separated particles approximately 300 nm in diameter were obtained when self‐assembled from tetrahydrofuran (THF) into water compared with unique large multivesicular particles of 1200 nm size being obtained when assembled from THF into ethanol (EtOH). A range of intermediate structures were also prepared from a three part solvent system THF/water/EtOH. These techniques present new tools to engineer the self‐assembly of non‐spherical polymer particles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 750–757 相似文献
9.
A series of block sulfonated poly(arylene ether ketone) (SPAEK) copolymers with different block lengths and ionic contents were synthesized by a two‐stage process. The morphology of these block SPAEK copolymers was investigated by various methods, such as differential scanning calorimetry (DSC), transmission electron microscope (TEM), and small angle X‐ray scattering (SAXS). Dark colored ionic domains of hundreds of nanometers spreading as a cloud‐like belt were observed in TEM images. The sizes of the ionic domains as a function of block copolymer composition were determined from SAXS curves. The results for the evolution of ionic domains revealed that the block copolymers exhibited more clearly phase‐separated microstructure with increasing ionic contents and hydrophobic sequence lengths. Proton conductivity is closely related to the microstructure, especially the presence of large interconnected ionic domains or ionic channels. Block SPAEK membranes have interconnected ionic clusters to provide continuous hydrophilic channels, resulting in higher proton conductivity. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
Xiaoyan Zhang Pascal Tanner Alexandra Graff Cornelia G. Palivan Wolfgang Meier 《Journal of polymer science. Part A, Polymer chemistry》2012,50(12):2293-2318
Cell membranes are essential barriers in Nature. To understand their properties and functions and to develop desirable applications, a simple and elegant approach is to study membranes that mimic the cell membrane. Lipid bilayers represent simple models that are physiologically representative when in the form of mixtures of various lipids, but they are not adequately stable even when covered with amphipathic proteins or when combined with polymers, thus preventing technological applications. This makes necessary the design of completely synthetic membranes. In this respect, amphiphilic copolymers that self‐assemble under dilute aqueous conditions and generate supramolecular polymer vesicles or films are ideal candidates for synthetic membranes. Their versatility in terms of chemistry and properties (permeability, mechanical stability, thickness), if appropriately designed, enable the insertion of biological molecules, such as membrane proteins and biopores, or the attachment of biomolecules at their surfaces. Here, we present the domain of synthetic membranes based on amphiphilic copolymers beginning with their generation and up to their applications in medicine, the food industry, and technology. Even though significant progress has been made in combining them with membrane proteins, open questions remain with respect to desired properties that could accommodate biological molecules and support further development of the field, from both the point of view of fundamental understanding and of applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
11.
Polypeptide/inorganic hybrid copolymers were obtained by a four-step synthetic approach combining (i) atom transfer polymerization of tert-butyl acrylate, (ii) chemical modification of the bromo end groups of ATRP-polymers into primary amino group using Gabriel reaction, (iii) ring opening polymerization of Nε-trifluoroacetyl-l-lysine or γ-benzyl-l-glutamate N-carboxyanhydrides followed by (iv) the transamidification reaction using a large excess of (3-aminopropyl)trimethoxysilane to substitute the tert-butyl groups of the poly(tert-butyl acrylate) block. Products were characterized using 1H NMR, FT-IR, DSC and MALDI-TOF MS. These techniques proved that polymerization of tert-butyl acrylate was controlled whatever the molecular weight targeted and that bromide was quantitatively converted to amino end group by a original method leading to the synthesis of copolymers in the presence of N-carboxyanhydrides as monomers. Amphiphilic polypeptide/inorganic hybrid copolymers were then achieved. 相似文献
12.
The new macroazoinitiators containing poly (propylene glycol), (PPG), with molecular weight 400 and 2000, having hydrophilic character, were synthesized and polymerized with styrene to prepare PS-b-PPG block copolymers. Cast films and e-spun films were prepared and contact angles of these films with water drop were measured to examine hydrophilic/hydrophobic behavior of the copolymers. Each e-spun film with average fiber diameters from 0.25 to 2.20 μm was prepared in N,N-dimethylformamide (DMF) under controlled electrospinning process parameters such as polymer concentration, applied voltage and tip-to-collector distance. Scanning electron microscope (SEM) images of the electrospun films were taken to determine the fiber diameters. Surface compositions of the block copolymers were also determined by using an electron spectrometer with Mg Kα X-rays. NMR, and FT-IR spectroscopic, and GPC measurements were employed to characterize and determine the PPG contents (6-43%). From the results, electrospinning process increased the hydrophilic properties of the block copolymers obtained, compared their cast film forms. Our results suggest that these polymers are favorable in biological applications in cases where high ratio of the surface to volume and hydrophilicity are required simultaneously. Both chemical structure and topology of the films are important in wetting and hydrophobicity. 相似文献
13.
An easy route to planar solid-supported polymer membranes by vesicle spreading is described. Pre-organized poly(butadiene)-block-poly(ethylene oxide)(PB-PEO) assemblies were spread on two different supports, i.e. strongly hydrophilic glass surfaces and ultrasmooth gold substrates. Polymer membranes were produced on a hydrophilic support by spreading hydroxyl-functionalized polymer vesicles, while covalently immobilized polymer membranes were obtained by spreading LA-functionalized polymer vesicles on gold substrates. Covalently bound membranes were further incubated with the peptide polymyxin B. Interactions with the polymer membrane were detected by EIS. These systems are of great interest to fundamental membrane science and have potential in technological applications, such as drug screening and (bio)sensing. 相似文献
14.
Peter ?ernoch Petr Štěpánek Miroslav Šlouf Manfred Stamm 《European Polymer Journal》2007,43(4):1144-1153
A systematic study of formation of surface patterns in block copolymer thin layers after their exposure to solvent vapors was performed. The studied effect involves layers of thickness approximately equal to the ordering size of polymers - about 45 nm. Experiments were performed on three styrene - methacrylate derivative block copolymers, synthesized by living anionic polymerization: poly(4-octylstyrene)-block-poly(butyl methacrylate), poly(4-fluorostyrene)-block-poly(butyl methacrylate) and poly(p-octylstyrene)-block-poly(methyl methacrylate). The polymers were exposed to vapors of chloroform, 1,4-dioxane, hexane, acetone and tetrahydrofuran. 相似文献
15.
Alejandro J. Müller María Luisa Arnal Mariselis Trujillo Arnaldo T. LorenzoAuthor vitae 《European Polymer Journal》2011,47(4):614-629
In this paper we reexamine recent results obtained by our group on the crystallization of nanocomposites and linear and miktoarm star copolymers in order to obtain some general features of their crystallization properties. Different nanocomposites have been prepared where a close interaction between the polymer matrix and the nano-filler has been achieved: in situ polymerized high density polyethylene (HDPE) on carbon nanotubes (CNT); and polycaprolactone (PCL) and poly(ethylene oxide) (PEO) covalently bonded to carbon nanotubes. In all these nanocomposites a “super-nucleation” effect was detected where the CNTs perform a more efficient nucleating action than the self-nuclei of the polymer matrix. It is believed that such a super-nucleation effect stems from the fact that the polymer chains are tethered to the surface of the CNT and can easily form nuclei. For polystyrene (PS) and PCL block copolymers, miktoarm star copolymers (with two arms of PS and two arms of PCL) were found to display more compact morphologies for equivalent compositions than linear PS-b-PCL diblock copolymers. As a consequence, the crystallization of the PCL component always experienced much higher confinement in the miktoarm stars case than in the linear diblock copolymer case. The consequences of the topological confinement of the chains in block copolymers and nanocomposites on the crystallization were the same even though the origin of the effect is different in each case. For nanocomposites a competition between super-nucleation and confinement was detected and the behavior was dominated by one or the other depending on the nano-filler content. At low contents the super-nucleation effect dominates. In both cases, the confinement increases as the nano-filler content increases or the second block content increases (in this case a non-crystallizable block such as PS). The consequences of confinement are: a reduction of both crystallization and melting temperatures, a strong reduction of the crystallinity degree, an increase in the supercooling needed for isothermal crystallization, a depression of the overall crystallization rate and a decrease in the Avrami index until values of one or lower are achieved indicating a nucleation control on the overall crystallization kinetics. 相似文献
16.
Binder WH Barragan V Menger FM 《Angewandte Chemie (International ed. in English)》2003,42(47):5802-5827
"It takes a membrane to make sense out of disorder in biology. You have to be able to catch energy and hold it, storing precisely the needed amount and releasing it in measured shares". So wrote Lewis Thomas in The Lives of Cells. Domains and rafts are shown in the present Review to play an important role in this amazing behavior of lipid membranes. Topics touched upon include the experimental detection of domains, their composition, domain induction, properties of rafts (a special form of domain), and the relationship of rafts to human diseases. Lipids, polymers, and proteins can contribute to this type of micro- and nanostructuring within membranes, thus imposing a new structural hierarchy on top of the classical bilayer membrane. The purpose of this Review is to develop an appreciation for the multiple organizational levels in self-assembling systems. 相似文献
17.
Kris R.M. Vidts 《European Polymer Journal》2006,42(1):43-50
The preparation of block copolymers consisting of poly(4-vinylpyridine) (P4VP) by atom transfer radical polymerization (ATRP) was investigated. The goal was to synthesize water-soluble block copolymers with poly(ethylene oxide) (PEO) as first block, a water-soluble polymer at any pH. First, a PEO macroinitiator was prepared for the ATRP block copolymerization of 4-vinylpyridine. In the second stage, the kinetic behaviour of this block copolymerization was investigated for two different types of PEO-macroinitiators and catalyst systems, based on CuCl or CuCl2/Cu(0), with tris[2-(dimethylamino)ethyl]amine (Me6-TREN) as the ligand. Various combinations of initiator and catalyst led to a controlled block copolymerization with optimized results obtained for chlorinated poly(ethylene glycol) monomethyl ether as macroinitiator, together with CuCl2/Cu(0)/Me6-TREN as catalyst system. With the latter system, narrow polydispersities (1.25) could be reached for PEO-P4VP block copolymers. 相似文献
18.
Transition metal nanoparticles protected by amphiphilic block copolymers as tailored catalyst systems 总被引:4,自引:0,他引:4
Several stable palladium, platinum, silver, and gold colloids were prepared by reducing the corresponding metal precursors
in the presence of protective amphiphilic block copolymers. Some palladium and platinum precursors with different hydrophobicities,
namely palladium chloride PdCl2, palladium acetate Pd (CH3COO)2, hexachloroplatinic acid H2PtCl6, and platinum acetylacetonate Pt (CH3COCH=C(O–)CH3)2, have been used in order to investigate differences in their catalytic activity. The polymers investigated for their ability
to stabilize such transition metal colloids were polystyrene-b-poly(ethylene oxide) and polystyrene-b-poly(methacrylic acid).
The metal particle sizes and morphologies were determined by transmission electron microscopy and found to be in the M28.8nnanometer
range. The catalytic activity of the palladium and platinum colloids was tested by the hydrogenation of cyclohexene as a model
reaction. The protected palladium and platinum nanoparticles were found to be catalytically active, and final conversions
up to 100% cyclohexane could be obtained. Depending on the choice of polymer block types and lengths, the precursor type,
and the reduction method, different nanoparticle morphologies and catalytic activities could be obtained. These novel catalytically
active metal–polymer systems are thus promising candidates for the development of tailored catalyst systems.
Received: 10 June 1996 Accepted: 30 October 1996 相似文献
19.
Kyra L. Sedransk Clemens F. Kaminski Lian R. Hutchings Geoff D. Moggridge 《Polymer Degradation and Stability》2011,96(6):1074-1080
A degradation study of polystyrene-polybutadiene-polystyrene and polyisoprene-polystyrene-polyisoprene in both dichloromethane and hexane solvents is presented. Alternative solvents for metathetic degradation provide the potential for greener chemistry, better selectivity, and control over the products. The catalyst concentration and solvent selection both determine the products formed. The degradation of polyisoprene and polybutadiene in a particular solvent was controlled by the solubility of polyisoprene/polybutadiene, and by its solubility relative to polystyrene. A large difference in solubility between the polymers in the selected solvent provides an additional driving force for block separation, encouraging reaction close to the interface between different blocks. Furthermore, solubility of the block copolymer speeds the degradation reaction. This tailoring of the reaction mechanism yields a new control over the products of polymer degradation. 相似文献
20.
Iliyana V. Berlinova Ivaylo V. Dimitrov Ivan Gitsov 《Journal of polymer science. Part A, Polymer chemistry》1997,35(4):673-679
The synthesis of novel amphiphilic star-graft (SG) copolymers containing hydrophilic poly(oxyethylene) (PEO) side chains attached to a hydrophobic backbone by multifunctional entity is reported. In a first step poly(phthalimidoacrylate-co-styrene) was converted into polymers containing different number of multifunctional branching cites distributed along the main chain by partial aminolysis of the phthalimidoacrylate units with tris(hydroxymethyl)aminomethane. In the second step, these reactive copolymers yielded SG copolymers with different number of star-shaped PEO side groups by reaction with isocyanato terminated methoxy–PEO. The copolymers were characterized by size-exclusion chromatography, IR-, and NMR-spectroscopy. Their thermal properties were examined by thermal gravimetric analysis and differential scanning calorimetry. The studies indicate that the grafting degree and hydrogen bonding determine to a great extent the behavior of the SG copolymers in solid state and in solution. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 673–679, 1997 相似文献