首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We propose a type of photonic heterostructure by combining dielectric one-dimensional (1D) defective photonic crystals (PCs) and magnetic 1D defective PCs. Both of the two PCs consist of alternating positive-index-material (PIM) layers with a negative-index-material (NIM) defect layer. It is demonstrated by transfer matrix method that there is a polarization- and direction-independent defect mode in a wide incident-angle range within Bragg gaps in the heterostructure. The field distributions prove that the dielectric 1D defective PC benefits to achieve the approximately omnidirectional defect mode for TE waves while the magnetic 1D defective PC benefits for TM waves. Such a structure is useful for designing polarization-independent and omnidirectional or large incident angle narrow-passband filters in optical devices.  相似文献   

2.
Solar thermal collectors are applicable in the water heating or space conditioning systems in which surface-based absorption of incident solar flux cause high heat losses. Therefore, an enhancement in the efficiency of solar harvesting devices is a basic challenge which requires great effort. Adding nanoparticles to the working fluid in direct absorption solar collector, which has been recently proposed, leads to improvement in the working fluid thermal and optical properties such as thermal conductivity and absorption coefficient. This results certainly in collector efficiency enhancement. In this paper, the characteristics of nanofluids consisting carbon nanoball in water- and ethylene glycol-based suspensions in consideration of their use as sunlight absorber fluid in a DASC are investigated. It was found that by using of 300 ppm carbon nanoballs, the extinction coefficient of pure water and ethylene glycol is increased by about 3.9 cm?1 and 3.4 cm?1 in average, respectively. With these significantly promising optical properties, a direct absorption solar collector using carbon nanoball-based nanofluids can achieve relatively higher efficiencies, compared with a conventional solar collector.  相似文献   

3.
《Current Applied Physics》2015,15(9):1090-1094
We fabricated organic photovoltaic (OPV) devices containing various Au nanostructures mixed with hole-collecting buffer layer. The presence of the Au nanostructures results in enhancement of the external quantum efficiencies (EQE) at dissimilar wavelengths of visible light, which can be attributed to the modulated plasmonic absorption frequency of the Au nanostructures. In addition to this plasmonic effect induced by visible light absorption, an increase in the EQE was also found upon UV excitation, which can be attributed to scattering effects induced by Au particles. The optical response pattern of organic photovoltaic devices can be modulated in a wide range of visible and UV wavelengths, by controlling sizes and shapes of the Au nanostructures.  相似文献   

4.
In this work, enhanced poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulkheterojunction photovoltaic devices are achieved via slow-solvent-vapour treatment. The correlations between the morphology of the active layer and the photovoltaic performance of polymer-based solar cell are investigated. The active layers are characterized by atomic force microscopy and optical absorption. The results show that slow-solventvapour treatment can induce P3HT self-organization into an ordered structure, leading to the enhanced absorption and efficient charge transport.  相似文献   

5.
The broadband absorption enhancement effect in ultrathin molybdenum disulfide(Mo S2)films is investigated.It is achieved by inserting the Mo S2 film between a dielectric film and a one-dimensional silver grating backed with a silver mirror.The broadband absorption enhancement in the visible region is achieved,which exhibits large integrated absorption and short-circuit current density for solar energy under normal incidence.The optical properties of the proposed absorber are found to be superior to those of a reference planar structure,which makes the proposed structure advantageous for practical photovoltaic application.Moreover,the integrated absorption and short-circuit current density can be maintained high for a wide range of incident angles.A qualitative understanding of such broadband absorption enhancement effect is examined by illustrating the electromagnetic field distribution at some selected wavelengths.The results pave the way for developing high-performance optoelectronic devices,such as solar cells,photodetectors,and modulators.  相似文献   

6.
We discuss photonic crystals (PCs) with a microelectromechanical system (MEMS) and semiconductor quantum dots (QDs) as novel classes of PC devices. Integration of MEMS structures into PC devices enables one to realize several kinds of functional devices, such as modulators, switches, and tunable filters for highly integrated photonic circuits. We describe the basic concept of MEMS-integrated PC devices and show numerical and experimental demonstrations of MEMS-integrated functional PC devices. On the other hand, QDs are promising candidates for active media in PC devices. Spontaneous emission control of QD emission in PC nanocavities is especially important for novel optoelectronic devices and quantum information devices. In PC nanocavities, the interaction between QD excitons and photons is enhanced dramatically. The control of spontaneous emission spectrum and the enhancement of the luminescence intensity of InAs QDs by PC nanocavities are demonstrated at telecommunication wavelengths. The Purcell effect for ensemble and single QDs in PC nanocavities are also discussed.  相似文献   

7.
Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation. We have investigated the electromagnetic wave propagation inside an elliptic rod PC slab by means of finite-difference time-domain simulations. The band structure of the PC composed of elliptic rod in the square and triangular lattices is studied by solving Maxwell's equations using the plane wave expansion method. Numerical simulations show that the refractive angle can be tuned greatly by rotating the directors of elliptic rod in the PC slab. Furthermore, an optical switch based on elliptic rod PC structures with nematic liquid crystals was proposed. In the on/off switching system, the partial band gap can be controlled when the normalized operation frequency is 0.28. The modulation induced by liquid crystals created a sharp switching in the photonic devices. Such a mechanism of negative refraction PCs should open up a new application for designing components in photonic integrated circuits.  相似文献   

8.
易凌俊  李长红 《发光学报》2022,43(1):119-128
为增强石墨烯对近红外通信波段光波的吸收,提出了一种基于周期性宇称-时间(Parity-time)对称结构的石墨烯基吸收器,该结构由顶层的石墨烯层和底层周期性PT对称单元构成.采用传输矩阵方法系统地研究了该结构中石墨烯对1450~1650 nm波长范围内光波的吸收特性.结果表明,通过优化石墨烯复合PT对称微纳结构参数,对...  相似文献   

9.
In this work we theoretically study the one-way optical properties in asymmetric triadic-Cantor-set (TCS) photonic crystals (PCs), air/TCSN/G/TCSM/air, where TCSN is the stage N TCS composed of a lossy epsilon-negative (ENG) material and a lossy mu-negative (MNG) material. In addition, the defect layer G is a dielectric. Our results show that the absorption spectra are different in forward and backward propagation. Specially, it is first discovered that the one-way properties will disappear if the layer thicknesses are large. Besides, the layer thickness limit is smaller when the TCS stage is larger. Additionally, comparing with previous studies, we find that the type of interaction between the defect and non-defect modes is decided by the layer materials of the PC structure.  相似文献   

10.
Park W  Summers CJ 《Optics letters》2002,27(16):1397-1399
Studies of the refraction and dispersion properties of two-dimensional (2D) photonic-crystal (PC) slab waveguides are reported. The photonic band structure is strongly modified in a slab PC, and only a small number of bands satisfy the guiding conditions imposed by the lack of translation symmetry in the direction perpendicular to the slab; however, it was found that a significant number of the guided modes retain the giant refraction and strong dispersion properties discovered previously in pure 2D PCs. A small change in incident angle resulted in a dramatic change in refraction angle. Furthermore, the dispersion surface exhibited a strong dependence on the frequency, resulting in a superprism effect similar to what has been predicted for pure 2D PCs. In the silicon-based slab PC studied, refraction angles as high as nearly 70 degrees were predicted for incident angles of less than 7 degrees , and frequency components differing by 3% were separated by 15 degrees . The demonstration of giant refraction and superprism phenomena in slab waveguide PCs open the possibility of developing new classes of optical devices that can, for example, be used to develop 2D optical integrated circuits for communications and computing.  相似文献   

11.
Two-dimensional (2-D) square lattice (SL) photonic crystals (PCs) are fabricated, and their optical/electro-optical properties are studied. The PCs are based on polymer-dispersed liquid crystals (PDLC) that are formed using two-beam interference with double exposures. The PC structure that is observed using a scanning electron microscope matches with the calculated interference pattern. The results of optical/electro-optical studies demonstrate that superprism and negative refraction effects occur at certain incident angles over a range of frequencies and are consistent with the simulated ones. Moreover, the negative refraction efficiency is electrically controllable.  相似文献   

12.
席锋  秦岚  薛联  段莹 《强激光与粒子束》2013,25(4):1035-1039
位置敏感探测器(PSD)是基于半导体的横向光电效应的光电转换器件。根据横向光电效应的原理,增强光生载流子的寿命可提高光生载流子的扩散长度,从而实现横向光电效应的增强。利用缺陷和完整光子晶体设计了一维位置敏感探测器,并用传输矩阵法计算了缺陷光子晶体的透射率和完整光子晶体的反射率。从所设计的位置敏感探测器对入射光的响应理论研究表明,提高缺陷光子晶体的透射率和完整光子晶体的反射率可提高光生载流子的寿命,从而实现增强位置敏感探测器的横向光电效应。  相似文献   

13.
Two-photon photopolymerization (TPP) with femtosecond laser is a promising method to fabricate threedimensional (3D) photonic crystals (PCs). Based on the TPP principle, the micro-fabrication system has been built. The 3D woodpile PCs with rod space of 2000 nm are fabricated easily and different defects are introduced in order to form the cross-waveguide and the micro-laser structure PCs. Simulation results of the optical field intensity distributions using finite-difference time domain (FDTD) method are given, which support the designs and implementation of the PC of two types in theory.  相似文献   

14.
Bogdanova  M. V.  Eiderman  S. L.  Lozovik  Yu. E.  Willander  M. 《Laser Physics》2008,18(4):417-423
The absorption spectra of three-dimensional metal-dielectric photonic crystals (PCs) are studied using computer simulation by the finite difference time domain method and the layered Korringa-Kohn-Rostoker method. The band structure of a three-dimensional dielectric PC is obtained by the plane wave expansion method. The explanation of absorption spectra of PC based on its comparison with the band structure and Fabry-Perot resonances inside a PC plate is given. The intensity distribution of an electric field using FDTD inside the metal-dielectric PC for three various structures is analyzed. It is shown that spherical cavities in a dielectric PC “focus” the field inside cavities at certain wavelengths. This leads to an increase of absorption at these wavelengths if metal spheres are located in the centers of those cavities. This effect can be considered as an analogue of the Borrmann effect in X-ray spectroscopy.  相似文献   

15.
The enhanced performance of a squaraine compound, with 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor, in solution-processed or- ganic photovoltaic devices is obtained by using UV-ozone-treated MoO3 as the hole-collecting buffer layer. The optimized thickness of the MoO3 layer is 8 nm, at which the device shows the best power conversion efficiency (PCE) among all devices, resulting from a balance of optical absorption and charge transport. After being treated by UV-ozone for 10 min, the transmittance of the MoO3 film is almost unchanged. Atomic force microscopy results show that the treated surface morphology is improved. A high PCE of 3.99% under AM 1.5 G illumination (100 mW/cm2) is obtained.  相似文献   

16.
The electronic structure characters are calculated for the Zn_(1-x)M_xO alloys with some Zn atoms in ZnO substituted by 3d transition-metal atoms(M),in order to find out which of these alloys could provide an intermediate band material used for fabricating high efficiency soiar cell.Especially,among of these alloys,the electronic structure character and optical performance of Zn_(1-x)Cr_xO alloys clearly show an intermediate band Med partially and isolated from the VB and the CB in energy band structure of ZnO host,and the intermediate band characters can be preserved with increasing Cr concentrations no more than 8.33%in Zn_(1-x)Cr_xO alloys,at the same time,the ratio 0.52 of E_g~(FC) to E_g~(VE) in Zn_(1-x)Cr_xO,(x = 4.16%) alloy is closest to the optimal ratio of 0.57.Besides,compared to the ZnO,the optical absorption does indicate a great improved absorption below the calculated band gap of the ZnO and an enhancement of the optical absorption in the whole solar spectral energy range.  相似文献   

17.
To increase the absorption in a thin layer of absorbing material (amorphous silicon, a-Si), a light trapping design is presented. The designed structure incorporates periodic metal-insulator-metal waveguides to enhance the optical path length of light within the solar cells. The new design can result in broadband optical absorption enhancement not only for transverse magnetic (TM)-polarized light, but also for transverse electric (TE)-polarized light. No plasmonic modes can be excited in TE-polarization, but because of the coupling into the a-Si planar waveguide guiding modes and the diffraction of light by the bottom periodic structures into higher diffraction orders, the total absorption in the active region is also increased. The results from rigorous coupled wave analysis show that the overall optical absorption in the active layer can be greatly enhanced by up to 40%. The designed structures presented in this paper can be integrated with back contact technology to potentially produce high-efficiency thin-film solar cell devices.  相似文献   

18.
The effect of graphene on the Faraday rotation (FR) in dielectrics/antiferromagnetic photonic crystals (D/AF PCs) is investigated by using the forth-order transfer matrix, in which the graphene (Gr) is embedded on the surface of AF. When the incident light is vertical to the surface of D/Gr/AF PCs, Gr will present anisotropic properties, in which the optical conductivity is characterized by the tensor. The numerical simulations show that the FR angle almost is enhanced by one order compared with the ones of D/AF PCs when the number of D/Gr/AF in the PC is 9. In addition, the maxima and positions of the FR angles can be adjusted by changing the external magnetic field strength. On the other hand, the effects of the Fermi energy of Gr on the FR also are discussed since it can be tuned by controlling the applied back-gate voltage. These results may be valuable in the design of THz devices.  相似文献   

19.
The integration of semiconductor nanoparticles (NPs) into a polymeric matrix has the potential to enhance the performance of polymer-based solar cells taking advantage of the physical properties of NPs and polymers. We synthesize a new class of CdS-NPs-based active layer employing a low-cost and low temperature route compatible with large-scale device manufacturing. Our approach is based on the controlled in situ thermal decomposition of a cadmium thiolate precursor in poly(3-hexylthiophene) (P3HT). The casted P3HT:precursor solid foils were heated up from 200 to 300 °C to allow the precursor decomposition and the CdS-NP formation within the polymer matrix. The CdS-NP growth was controlled by varying the annealing temperature. The polymer:precursor weight ratio was also varied to investigate the effects of increasing the NP volume fraction on the solar cell performances. The optical properties were studied by using UV–Vis absorption and photoluminescence (PL) spectroscopy at room temperature. To investigate the photocurrent response of P3HT:CdS nanocomposites, ITO/P3HT:CdS/Al solar cell devices were realized. We measured the external quantum efficiency (EQE) as a function of the wavelength. The photovoltaic response of the devices containing CdS-NPs showed a variation compared with the devices with P3HT only. By changing the annealing temperature the EQE is enhanced in the 400–600 nm spectral region. By increasing the NPs volume fraction remarkable changes in the EQE spectra were observed. The data are discussed also in relation to morphological features of the interfaces studied by Focused Ion Beam technique.  相似文献   

20.
Monodispersed silica microspheres of 270 nm are synthesized by a colloidal solution method. Larger scale perfect three-dimensional photonic crystals (PCs) are rapidly prepared using the evaporation of acetone to self-assemble the microspheres on quartz substrates by vertical deposition methods. We find that the pseudo-photonic band gap (PBG) of the PC structure changes with increasing annealing temperature; it drastically shifts from 450 nm for as-grown crystals to 409 nm for annealing at 800 °C. CdS photonic crystals are formed by infiltrating CdS nanocrystals of 6 nm into the SiO2 PC structure. The transmission and spontaneous emission characteristics of CdS PCs have been investigated. The clear dip in the spontaneous emission spectrum relates to the photonic band gap of CdS PCs, indicating that the spontaneous emission is inhibited in the region of the PBG. The emission band of CdS PCs becomes narrower and sharper than that of CdS nanocrystals; this demonstrates that the emission band and intensity of the luminescent devices will be tuned by controlling the position of the PBG. PACS 42.70.Qs; 42.25.Bs; 78.20.-e; 78.55.Et  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号