首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Synthesis of hierarchically ordered silica materials having ordered wood cellular structures has been demonstrated through in-situ mineralization of wood by means of surfactant-directed mineralization in solutions of different pH. At low pH, silicic acid penetrates the buried interfaces of the wood cellular structure without clogging the pores to subsequently “molecularly paint” the interfaces thereby forming a positive replica following calcinations. At high pH, the hydrolyzed silica rapidly condenses to fill the open cells and pits within the structure resulting in a negative replica of the structure. Surfactant-templated mineralization in acid solutions leads to the formation of micelles that hexagonally pack at the wood interfaces preserving structural integrity while integrating hexagonally ordered nanoporosity into the structure of the cell walls following thermal treatment in air. The carbothermal reduction of mineralized wood with silica at high temperature produces biomorphic silicon carbide (SiC) materials, which are typical aggregations of β-SiC nanoparticles. To understand the roles of each component (lignin, crystalline cellulose, amorphous cellulose) comprising the natural biotemplates in the transformation to SiC rods, three different cellulose precursors including unbleached and bleached pulp, and cellulose nanocrystals have been utilized. Lignin in unbleached pulp blocked homogeneous penetration of silica into the pores between cellulose fibers resulting in non-uniform SiC fibers containing thick silica layers. Bleached pulp produced uniform SiC rods with camelback structures (80 nm in diameter; ∼50 μm in length), indicating that more silica infiltrates into the amorphous constituent of cellulose to form chunky rather than straight rod structures. The cellulose nanocrystal (CNXL) material produced clean and uniform SiC nanowires (70 nm in diameter; >100 μm in length) without the camelback structure.  相似文献   

2.
Combining various synthetic chemical processes and biological assemblies provides a promising strategy for the design and fabrication of functional materials with tailored structures and properties.The unique multilevel structures and morphologies of natural cellulose substances such as ordinary commercial laboratory filter paper make them ideal platforms for the self-assemblies of various functional guest molecules that are to be deposited on the surfaces of their fine structures,and the resulting composite matters show significant potentials for various applications.The surface sol-gel process was employed to deposit ultrathin metal-oxide(e.g.,titania and zirconia)gel films to coat the cellulose nanofibers in bulk filter papers;thereafter,monolayers of specific guest substrates were immobilized onto the surfaces of the metal-oxide gel films.Highly selective,sensitive,and reversible chemosensors based on the surface modification of filter paper were obtained toward the fluorescence and colorimetric detection of various analytes such as heavy-metal ions,inorganic anions,amino acids,and gases.Cellulosebased composite materials with superhydrophobic,antibacterial,or luminescent properties were fabricated by self-assembly approaches toward practical applications.  相似文献   

3.
4.
Cellulose films containing entrapped analytical reagents suitable for metal-ion detection are produced by joint dissolution of cellulose and the reagents in ionic liquids then precipitation with water. The conditions of preparation of these test materials have been optimized and their properties have been studied. The film obtained by use of the ionic liquid 1-butyl-3-methylimidazolium chloride and 1-(2-pyridylazo)-2-naphthol has been used for colorimetric determination of divalent zinc, manganese, and nickel with detection limits at the 10−6 mol L−1 level.  相似文献   

5.
We have developed a concise tool for the investigation of the transition of humic substances in environmental water. The separation of water-soluble humic substances was achieved rapidly and effectively by capillary electrophoresis using a polyacrylamide-coated capillary and a phosphate electrophoretic buffer solution (pH 7.0) containing hydroxyethyl cellulose. The separation mechanism was assessed using the ultrafiltration technique. The effect of the complexation of humic substances with metal ions was studied by using the proposed method. When Fe(III) ions or EDTA was added to the sample solution of fulvic acid, a distinct change in the electropherogram pattern based on the conformational change of fulvic acid was observed. The successful application of the proposed method to the characterization of humic substances in a river water sample was also demonstrated. Figure Addition of Fe(III) ions or EDTA to a solution containing fulvic acid (FA) results in a distinct change in the electropherogram pattern, which reflects the conformational change of FA: this forms the basis for the characterization of humic substances in river water samples  相似文献   

6.
高分子膜燃料电池是一类很有发展前景的可提供可再生能源的装置,这主要得益于它的零排放、无毒性和较低的操作温度。在高分子膜燃料电池的部件中,电催化剂对于提高输出能量密度和/或工作寿命起到至关重要的作用。在过去的几十年中,科学家提出了很多办法和策略以解决电催化剂的活性和稳定性问题。尽管基于聚电解质的层层自组装制备膜电极的方法已经研究多年,但聚电解质在催化剂制备方面的作用仍需更多的关注。最近几年,已有很多人将聚电解质应用于催化剂设计制备,其中聚二烯丙基二甲基氯化铵(PDDA)的研究较为系统,因此,本文重点关注 PDDA,目的是总结出一些有用的信息,以便为该领域未来的研究发展提供一些参考。
  本文收集了一些聚电解质在电催化剂纳米颗粒和载体材料两方面应用的文献,不仅讨论了聚电解质在催化剂颗粒粒径、形貌和组成方面的影响,还总结了其在修饰载体材料方面的应用。最后,本文还展望了聚电解质在催化剂设计制备领域的发展。通常,聚电解质有三个主要的特征:(1)在水溶液中容易解离为带相反电荷的长链结构和离子;(2)长链结构中带有独特的官能团结构;(3)当溶液浓度变化时其结构会发生转变。因此,聚电解质可以在电催化剂层面作为纳米反应器来控制金属纳米颗粒的生长,可功能化或掺杂纳米颗粒以及载体材料,可以保护纳米颗粒或载体不衰减,同时还可使其他物质带电,利用自组装方法制备有序的催化剂。然而,相关研究大都集中于 PDDA,因此,其他聚电解质还需要进一步的系统研究,以便了解聚电解质特征、制备的催化剂以及催化性能之间的关系。
   PDDA在该领域的研究还需在如下几个方面继续进行。(1)聚电解质通常不是电子的良导体,其在催化剂表面的吸附会造成活性位的损失。尽管已经提出一些相对有效的方法,例如热处理、化学洗涤或光降解等,但仍需继续进行系统的研究和提出有效的方法。(2)先进的研究手段,如原位观测和模拟等还需进一步发展,尤其是研究聚电解质在催化剂形成过程中的功能和影响,这有利于构效关系的研究。(3)目前该领域制备的催化剂大都使用半电池或三电极体系来评价,但与实际的燃料电池装置有本质不同。由于复杂的工作条件,例如水热管理、不同组件的界面耦合等,聚电解质制备催化剂在膜电极中有可能不能表现出优良的性能。因此,上述催化剂的研究还应考虑燃料电池的实际运行情况。  相似文献   

7.
Advances in production are leading to increasing use of polymeric thin films in applications such as automotive bearings. Two approaches have been developed to study the thermophysical properties of these thin films: The first technique based on Flash theory uses a scanning thermal microscopy (SThM) tip in temperature contrast mode to measure thermal diffusivity over a nano-scale area. The SThM tip is in contact with the upper surface of the film to detect a heat pulse delivered by a microelectromechanical heater platform from the lower surface. The second technique is a conductivity contrast mode SThM based approach for measuring the size and distribution of thermally conducting particles in thin film polymeric coatings. Topographical and thermal conductivity data are combined to produce a “correlation analysis value” 3D particle map of the coating. Good practice and a case study are highlighted.  相似文献   

8.
To utilize a gap mode in surface enhanced Raman scattering, we elucidated the interaction between adsorbed species and Ag nanoparticles (AgNPs). Various thiol molecules such as normal alkanethiols, thiols with a phenyl, cyclohexane or naphthalene ring on Ag films immobilized AgNPs through van der Waals force, and electrostatic interaction. Immobilized AgNPs provided enormous Raman enhancement by a factor of 107–1010 for thiol molecules at a nanogap, in consistent with that anticipated by finite difference time domain calculations. Only alkanethiols with a tert-methyl group and those with a carboxylic group did not immobilize any AgNPs probably owing to steric hindrance. A gap mode is relevant for a variety of metals even with large damping like Pt and Fe, indicating a crucial role of electric multipoles in AgNPs generated by a localized surface plasmon and induced mirror images in metal substrates for markedly enhanced electric field at a nanogap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号