首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The effect of hydrostatic pressure on the binding energy of a hydrogenic impurity in a GaAs/GaAlAs quantum wire is discussed. Calculations have been performed using Bessel functions as an orthonormal basis within a single band effective mass approximation. Pressure induced photoionization cross section of the hydrogenic impurity is investigated. The total optical absorption and the refractive index changes as a function of normalized photon energy between the ground and the first excited state in the presence of pressure are analysed. The optical absorption coefficients and the refractive index changes strongly depend on the incident optical intensity and the pressure.  相似文献   

2.
The combined effects of hydrostatic pressure, presence and absence of hydrogenic donor impurity are investigated on the linear and nonlinear optical absorption coefficients and refractive index changes of a GaAs/Ga1−xAlxAs nanowire superlattice. The wave functions and corresponding eigenvalues are calculated using finite difference method in the framework of effective mass approximation. Analytical expressions for the linear and third order nonlinear optical absorption coefficients and refractive index changes are obtained by means of compact-density matrix formalism. The linear and third order nonlinear absorption coefficient and refractive index changes are presented as a function of photon energy for different values of hydrostatic pressure, incident photon intensity and relaxation time in the presence and absence of hydrogenic donor impurity. It is found that the linear and third order nonlinear absorption coefficients, refractive index changes and resonance energy are quite sensitive to the presence of impurity and applied hydrostatic pressure. Moreover, the saturation in optical spectrum and relaxation time can be adjusted by increasing pressure in presence of impurity whereas the effect of hydrostatic pressure is negligible in the case of absence of hydrogenic impurity.  相似文献   

3.
Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/Al x Ga 1 x As spherical quantum dot are theoretically investigated,using the Luttinger-Kohn effective mass equation.So,electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach,respectively.Finally,effects of an impurity,band edge non-parabolicity,incident light intensity and the dot size on the linear,the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated.Our results indicate that,the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered.Moreover,incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.  相似文献   

4.
Magnetic field induced exciton binding energy is investigated in a strained InAs/GaAs quantum wire within the framework of single band effective mass approximation. The strain contribution to the potential is determined through deformation potentials. The interband emission energy of strained InAs/GaAs wire is investigated in the influence of magnetic field with the various structural parameters. Magnetic field induced photoionization cross section of the exciton is studied. The total optical absorption and the refractive index changes as a function of normalized photon energy between the ground and the first excited state in the presence of magnetic field are analyzed. The optical absorption coefficients and the refractive index changes strongly depend on the incident optical intensity and the magnetic field. The occurred blueshift of the resonant peak due to the magnetic field will give the information about the variation of two energy levels in the quantum well wire. The optical absorption coefficients and the refractive index changes are strongly dependent on the incident optical intensity and the magnetic field.  相似文献   

5.
Optical absorption coefficients and refractive index changes associated with intersubband transition of an off-center hydrogenic impurity in a spherical quantum dot (QD) with Gaussian confinement potential are theoretically investigated. Our results show that the optical absorption coefficients in a spherical QD are 2–3 orders of magnitude higher than those in quantum wells and are 2–3 orders smaller than those in a disk-like QD. It is found that the optical absorptions and the optical refractive index are strongly affected not only by the confinement barrier height, dot radius but also by the position of the impurity.  相似文献   

6.
We have investigated the influence of electron–phonon (e–p) interaction and hydrogenic donor impurity simultaneously on energy difference, binding energy, the linear, nonlinear and total refractive index changes and absorption coefficients of a hexagonal-shaped quantum wire. For this goal, we have used finite-element method (FEM), a compact density matrix approach and an iterative procedure. It is deduced that energy difference and binding energy decrease by changing the impurity position with and without e–p interaction. The dipole matrix elements have complex behaviours in the presence of impurity with and without e–p interaction. The refractive index changes and absorption coefficients increase and shift towards lower energies by enhancing a 1 with central impurity. In the presence of central impurity, the absorption coefficients and refractive index changes enhance and shift toward higher energies when e–p interaction is considered.  相似文献   

7.
In this paper, the effect of hydrostatic pressure on the intersubband optical absorption and the refractive index changes in a GaAs/Ga1−xAlxAs ridge quantum wire are studied. We use analytical expressions for the linear and third-order nonlinear intersubband absorption coefficients and refractive index changes obtained by the compact-density matrix formalism. The linear, third-order nonlinear, and total intersubband absorption coefficients and refractive index changes are investigated at different pressures as a function of photon energy with known values of width wire (bb), the incident optical intensity (II), and the angle θθ. According to the results obtained from the present work, we have found that the pressure plays an important role in the intersubband optical absorption coefficients and refractive index changes in a V-groove quantum wire.  相似文献   

8.
A system of an electron with a hydrogenic impurity confined in anisotropic quantum dots with ellipsoidal shape has been investigated. The linear and nonlinear optical absorptions as well as refractive index changes associated with intersubband transitions has been calculated. The results are presented as a function of the incident photon energy. The results show that the optical properties of a donor in ellipsoidal quantum dots are strongly affected by the anisotropy degree and the dot size. The dot anisotropy is shown to play a fundamental role in determining the dot properties.  相似文献   

9.
The linear and the third-order nonlinear optical absorption coefficients and refractive index changes in a modulation-doped asymmetric double quantum well are studied theoretically. The electron energy levels and the envelope wave functions in this structure are calculated by the Schrödinger and Poisson equations self-consistently in the effective mass approximation. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. In this regard, the linear, nonlinear and total intersubband absorption coefficients and refractive index changes are investigated as a function of right-well width (Lw2) of asymmetric double quantum well. Our results show that the total absorption coefficients and refractive index changes shift toward higher energies as the right-well width decreases. In addition, the total optical absorption coefficients and refractive index changes is strongly dependent on the incident optical intensity.  相似文献   

10.
In this paper, the effect of hydrostatic pressure on both the intersubband optical absorption coefficients and the refractive index changes is studied for typical GaAs/Al x  Ga1?x As cubic quantum dot. We use analytical expressions for the linear and third-order nonlinear intersubband absorption coefficients and refractive index changes obtained by the compact-density matrix formalism. The linear, third-order nonlinear, and total intersubband absorption coefficients and refractive index changes are calculated at different pressures as a function of the photon energy with known values of box length (L), the incident optical intensity (I), and Al concentration (x). According to the results obtained from the present work, we have found that the pressure plays an important role in the intersubband optical absorption coefficient and refractive index changes in a cubic quantum dot.  相似文献   

11.
In this study, the changes in the refractive index and intersubband optical absorption coefficients in symmetric double semi-V-shaped quantum wells are investigated theoretically. The energy levels and the envelope wave functions of an electron confined in finite potential double semi-V-shaped quantum wells are calculated within the effective-mass approximation framework. The analytical expressions of the refractive index and intersubband optical absorption coefficients are obtained using the compact density matrix approach. The effects of the incident optical intensity and structure parameters, such as the barrier width, confinement potential and the well width, on the optical properties of the double semi-V-shaped quantum wells are investigated. The numerical results show that both the incident optical intensity and structure paremeters have a great effect on the optical characteristics of these structures.  相似文献   

12.
In this work, both the intersubband optical absorption coefficients and the refractive index changes are calculated exactly in a quantum box. Analytical expressions for the linear and nonlinear intersubband absorption coefficients and refractive index changes are obtained by using the compact-density matrix approach. Numerical results are presented for typical GaAs/AlxGa1−x As quantum box system. The linear, third-order nonlinear and total absorption and refractive index changes are investigated as a function of the incident optical intensity and structure parameters such as box-edge length and stoichiometric ratio. Our results show that both the incident optical intensity and the structure parameters have a great effect on the total absorption and refractive index changes.  相似文献   

13.
The nonlinear optical properties of an off-center hydrogenic donor in a two-dimensional quantum dot under applied magnetic field are investigated in detail by using the matrix diagonalization method. Based on the computed energies and wave functions, the linear, third-order and total optical absorption coefficients as well as the refractive index changes have been examined between the ground state (L=0) and the first excited state (L=1). The results show that the ion position, the applied magnetic field, the confinement frequency, and the incident optical intensity have an important influence on the nonlinear optical properties of off-center donors.  相似文献   

14.
15.
In this study, we have calculated the linear, nonlinear and total refractive index changes and absorption coefficients for the transitions 1s–1p, 1p–1d and 1d–1f in a spherical quantum dot with parabolic potential. Quantum Genetic Algorithm (QGA) and Hartree–Fock–Roothaan (HFR) method have been employed to calculate the wavefuctions and energy eigenvalues. The results show that impurity, dot radius, stoichiometric ratio, incident optical intensity and carrier density of the system have important effects on the optical refractive index changes and absorption coefficients. Also, we find that as the transitions between orbitals with big l value move to lower energy region in case with parabolic potential, in case without parabolic potential these transitions move to higher energy region.  相似文献   

16.
The effect of longitudinal optical phonon field on the ground state and low lying-excited state energies of a hydrogenic impurity in a Zn1−xCdxSe/ZnSe strained quantum dot is investigated for various Cd content using the Aldrich-Bajaj effective potential. We consider the strain effect considering the internal electric field induced by the spontaneous and piezoelectric polarizations. Calculations have been performed using Bessel function as an orthonormal basis for different confinement potentials of barrier height. Polaron induced photoionization cross section of the hydrogenic impurity in the quantum dot is investigated. We study the oscillator strengths, the linear and third-order nonlinear optical absorption coefficients as a function of incident photon energy for 1s-1p and 1p-1d transitions with and without the polaronic effect. It is observed that the potential taking into account the effects of phonon makes the binding energies more than the obtained results using a Coulomb potential screened by a static dielectric constant and the optical properties of hydrogenic impurity in a quantum dot are strongly affected by the confining potential and the radii. It is also observed that the magnitude of the absorption coefficients increases for the transitions between higher levels with the inclusion of phonon effect.  相似文献   

17.
The linear and nonlinear optical properties of cylinder GaN/AlN quantum dots with strain effects and impurity are investigated by taking into account the effects of the deformation potential and piezoelectric potential on the conduction band edge. The results are presented as a function of photon energies and QD radii. The optical absorption spectrum and refractive index changes have a blueshift in the presence of the impurity. With increasing distance of the impurity’s position along the growth direction, the peak values of the refractive index changes decrease and shift to higher photon energy. When the sizes of the QDs increase, redshift effects are observed and the relative amplitudes diminish. It can be found that the nonlinear effect becomes obvious with increase of the incident optical intensity. Then there is a “hole-burning” in the absorption coefficient spectra and two new peaks will appear in the total refractive index change spectrum when the optical intensity becomes larger enough. Finally it can be concluded that the intensity of the incident light and the position of the impurity play an important role in the linear and nonlinear optical properties.  相似文献   

18.
The optical absorption coefficients and the changes in the refractive index in GaAs/AlGaAs parabolic quantum dots(QDs) with applied electric and magnetic fields are studied in detail. Analytical expressions for the linear and nonlinear intersubband absorption coefficients and refractive index changes are obtained by using a compact density matrix approach and an iterative procedure. Finally, the calculated results show the incident optical intensity, the frequencies of the confined potential of the QDs and the applied electric and magnetic fields have a great influence on the optical absorption coefficients and refractive index changes in this system.  相似文献   

19.
Optical absorption coefficients and refractive index changes associated with intersubband transition in a parabolic cylinder quantum dot are theoretically investigated. In this regard, the electronic structure of the dot is studied using the one band effective mass theory, and by means of the compact-density matrix approach the linear and nonlinear optical absorption coefficients and refractive index changes are calculated. The effects of the size of the dot, optical intensity and electromagnetic field polarization on the optical absorption coefficient and refractive index changes are investigated. It is found that absorption and refractive index changes are strongly affected not only by the size of the dot but also by optical intensity and the electromagnetic field polarization.  相似文献   

20.
An investigation of the laser radiation effects of a hydrogenic impurity in a quantum dot has been performed by using the matrix diagonalization method. We find that the laser field amplitude has an important influence on the linear, third-order nonlinear, and total absorption coefficients as well as the refractive index changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号