首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y4MgSi3O13:Bi3+, Eu3+ nanophosphors have been prepared by a facile sol–gel method. The products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and fluorescence measurements. The results show that the nanophosphors are of single phase hexagonal Y4MgSi3O13 with size-distribution of 50–90 nm in diameter. White-light emission has been obtained from Bi3+ and Eu3+ co-doped Y4MgSi3O13 nanophosphors upon excitation of 350 nm ultraviolet light. It is noted that Bi3+ ions can occupy two different Y3+ sites and generate different emissions from the 3p1 → 1s0 transition. Warm white light has been obtained from Y4MgSi3O13:Bi3+, Eu3+ nanophosphors according to Commission International de I’Eclairage (CIE) chromaticity coordinates and color temperature (Tc) with appropriately adjusted contents of Bi3+ and Eu3+. The results indicate that Y4MgSi3O13:0.08Bi3+, 0.04Eu3+ (x = 0.31, y = 0.31, Tc = 6907 K) are potential nanophosphors for white light-emitting diodes (LEDs) applications.  相似文献   

2.
Single crystals of new quaternary compounds Sr8Cu3In4N5 and Sr0.53Ba0.47CuN were prepared, respectively, from a Sr–Cu–In–Na melt under 7 MPa of N2 and from a Sr–Ba–Cu–In–Na melt under 0.5 MPa of N2 by slow cooling from 1023 to 823 K. The crystal structures were determined by single-crystal X-ray diffraction. Sr8Cu3In4N5 has an orthorhombic structure (space group, Immm, Z=2, a=3.8161(5) Å, b=12.437(2) Å, c=18.902(2) Å), and is isostructural with Ba8Cu3In4N5. It contains nitridocuprates of isolated units 0[CuN2] and one-dimensional linear chains 1[CuN2/2] and one-dimensional indium clusters 1[In2In2/2]. Sr0.53Ba0.47CuN crystallizes in an orthorhombic cell, space group Pbcm, Z=4, a=5.4763(7) Å, b=9.2274(12) Å, c=9.0772(12) Å. The structure contains infinite zig-zag chains 1[CuN2/2] which kink at every second nitrogen atom.  相似文献   

3.
The intermetallic phases Li33.3Ba13.1Ca3 and Li18.9Na8.3Ba15.3 have been prepared and their crystal structures have been determined. According to single-crystal X-ray diffraction data, both compounds crystallize in new structure types with trigonal unit cells (Li33.3Ba13.1Ca3: Rc, a=19.9127(4) Å, c=90.213(3) Å, Z=18, V=30,978(1) Å3 and Li18.9Na8.3Ba15.3: P3¯, a=20.420(3) Å, c=92.914(19), Z=18, V=33,550(10) Å3). The first compound can be described as a complicated variant of the arsenic structure. The second has similar packing of the Ba atoms but differs from the Ca-containing phase in the packing of the light elements. Both compounds contain icosahedron-based polytetrahedral clusters, typical for Li-rich phases, e.g. Ba19Li44.  相似文献   

4.
Manganites NdM3Sr3Mn4O12 and NdM3Ba3Mn4O12 (M = Li, Na, K) were synthesized by a ceramic method from the corresponding oxides and carbonates. The X-ray diffraction analysis showed that all the compounds crystallized in the tetragonal crystal system with the following lattice parameters: NdLi3Sr3Mn4O12: a = 10.88 ?, c = 9.52 ?, V o = 1126.9 ?3, Z = 4, ρX = 4.95 g/cm3, ρpycn = 4.87 ± 0.05 g/cm3; NdNa3Sr3Mn4O12: a = 10.73 ?, c = 10.66 ?, V o = 1227.3 ?3, Z = 4, ρX = 4.80 g/cm3, ρpycn = 4.73 ± 0.07 g/cm3; NdK3Sr3Mn4O12: a = 10.87 ?, c = 11.71 ?, V o = 1382.6 ?3, Z = 4, ρX = 4.50 g/cm3, ρpycn = 4.43 ± 0.09 g/cm3; NdLi3Ba3Mn4O12: a = 10.97 ?, c = 10.34 ?, V o = 1244.3 ?3, Z = 4, ρX = 5.33 g/cm3, ρpycn = 5.23 ± 0.09 g/cm3; NdNa3Ba3Mn4O12: a = 10.99 ?, c = 11.15 ?, V o = 1346.7 ?3, Z = 4; ρX = 5.11 g/cm3, ρpycn = 5.05 ± 0.06 g/cm3; NdK3Ba3Mn4O12: a = 10.997 ?; c = 13.80 ?, V o = 1668.9 ?3, Z = 4, ρX = 4.32 g/cm3, ρpycn = 4.26 ± 0.07 g/cm3. Original Russian Text ? B.K. Kasenov, E.S. Mustafin, M.A. Akubaeva, S.T. Edil’baeva, Sh.B. Kasenova, Zh.I. Sagintaeva, S.Zh. Davrenbekov, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 3, pp. 424–427.  相似文献   

5.
High-temperature proton conductors have wide applications in the areas of fuel cells, electrolysis and hydrogen separation. Barium zirconate-based materials are of interest due to their good stability and high protonic conductivity. The reported conductivity of these ceramic materials is generally less than 10−2 S/cm, even at high temperatures. This is not high enough for an electrolyte-supported device to achieve an ASR of less than 0.2 Ω cm2 therefore thin film electrolytes are required for successful application. As BaZrO3-based materials have to be sintered at temperatures as high as 1700 °C, this makes it difficult to find a suitable supporting electrode which will not undergo significant chemical reaction with the BaZrO3-based electrolyte during fabrication of the required electrode supported electrolyte. In this paper, proton-conducting BaZr0.8Y0.2O2.9 was successfully sintered at 1325 °C with a relative density of 96% via addition of 1 wt% ZnO. Fabrication of electrochemical cells using proton-conducting BaZr0.8Y0.2O2.9 as the electrolyte thus becomes possible. The formula of the 1 wt% ZnO added sample is Ba0.97Zr0.77Y0.19Zn0.04O3−δ which exhibits a tetragonal structure with space group P4/mbm (127); a=5.9787(1) Å, c=4.2345(1) Å, V=151.36(1) Å3. It was found that a solid solution was formed for a limited range of Zn doping. Conductivity has been studied as a function of atmosphere (air, dry and wet 5% H2/Ar) with the changes in bulk and grain boundary on changing atmosphere being monitored as a function of time. The total conductivity of Ba0.97Zr0.77Y0.19Zn0.04O3–δ is 1.0×10−3 S/cm above 600 °C therefore it may be used as a proton-conducting thin film electrolyte for efficient electrochemical devices at such temperatures. The grain boundary resistance is insignificant at high temperature for the well-sintered sample.  相似文献   

6.
Three rare earth compounds, KEu[AsS4] (1), K3Dy[AsS4]2 (2), and Rb4Nd0.67[AsS4]2 (3) have been synthesized employing the molten flux method. The reactions of A2S3 (A = K, Rb), Ln (Ln = Eu, Dy, Nd), As2S3, S were accomplished at 600 °C for 96 h in evacuated fused silica ampoules. Crystal data for these compounds are: 1, monoclinic, space group P21/m (no. 11), a = 6.7276(7) Å, b = 6.7190(5) Å, c = 8.6947(9) Å, β = 107.287(12)°, Z = 2; 2, monoclinic, space group C2/c (no. 15), a = 10.3381(7) Å, b = 18.7439(12) Å, c = 8.8185(6) Å, β = 117.060(7)°, Z = 4; 3, orthorhombic, space group Ibam (no. 72), a = 18.7333(15) Å, b = 9.1461(5) Å, c = 10.2060(6) Å, Z = 4. 1 is a two-dimensional structure with 2[Eu(AsS4)] layers separated by potassium cations. Within each layer, distorted bicapped trigonal [EuS8] prisms are linked through distorted [AsS4]3− tetrahedra. Each Eu2+ cation is coordinated by two [AsS4]3− units by edge-sharing and bonded to further two [AsS4]3− units by corner-sharing. Compound 2 contains a one-dimensional structure with 1[Dy(AsS4)2]3− chains separated by potassium cations. Within each chain, distorted bicapped trigonal prisms of [DyS8] are linked by slightly distorted [AsS4]3− tetrahedra. Each Dy3+ ion is surrounded by four [AsS4]3− moieties in an edge-sharing fashion. For compound 3 also a one-dimensional structure with 1[Nd0.67(AsS4)2]4− chains is observed. But the Nd position is only partially occupied and overall every third Nd atom is missing along the chain. This cuts the infinite chains into short dimers containing two bridging [As4]3− units and four terminal [AsS4]3− groups. 1 is characterized with UV/vis diffuse reflectance spectroscopy, IR, and Raman spectra.  相似文献   

7.
A new series of vanadates with the general formula M Ba2V3O11, where M may be Bi, In, or a rare earth, has been synthesized and structurally characterized by single crystal X-ray diffraction and powder X-ray diffraction. The general formula may be rewritten as M Ba2(VO4)(V2O7) to emphasize that there is one orthovanadate group and one pyrovanadate group in each formula unit. Up to one-third of the vanadium may be replaced by phosphorous, leading to the general formula M Ba2V2PO11. However, phosphorous shows no preference between the ortho and pyro groups. Both M Ba2V3O11 and M Ba2V2PO11 crystallize in the monoclinic system with the space group P21/c and Z = 4. The cell parameters from single crystal X-ray data of BiBa2V3O11 are a = 12.332(4) Å, b = 7.750(4) Å, c = 11.279(4) Å, β = 103.22(3)°, V = 1049(1) Å3; and for BiBa2PO11 are a = 12.266(2) Å, b = 7.615(2) Å, c = 11.312(2) Å, β = 103.32(2)°, V = 1028.2(2) Å3. The Bi atom coordinates to six oxygen atoms forming a distorted octahedron, and the edge sharing of BiO6 octahedra results in a BiO4 chain along the b axis. There are two types of Ba atoms with coordination numbers of 10 and 11. There are three types of tetrahedral (T) atoms in these structures. The nonequivalent T atoms of the pyro group give T-O-T angles of 167 and 171° in BiBa2V3O11 and BiBa2V2PO11, respectively. Isostructural M Ba2V3O11 compounds were prepared in which M is In, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, or Lu.  相似文献   

8.
Quaternary selenides Sn2Pb5Bi4Se13 and Sn8.65Pb0.35Bi4Se15 were synthesized from the elements in sealed silica tubes; their crystal structures were determined by single-crystal and powder X-ray diffraction. Both compounds crystallize in monoclinic space group C2/m (No.12), with lattice parameters of Sn2Pb5Bi4Se13: a = 14.001(6) Å, b = 4.234(2) Å, c = 23.471(8) Å, V = 1376.2(1) Å3, R1/wR2 = 0.0584/0.1477, and GOF = 1.023; Sn8.65Pb0.35Bi4Se15: a = 13.872(3) Å, b = 4.2021(8) (4) Å, c = 26.855(5) Å, V = 1557.1(5) Å3, R1/wR2 = 0.0506/0.1227, and GOF = 1.425. These compounds exhibit tropochemical cell-twinning of NaCl-type structures with lillianite homologous series L(4, 5) and L(4, 7) for Sn2Pb5Bi4Se13 and Sn8.65Pb0.35Bi4Se15, respectively. Measurements of electrical conductivity indicate that these materials are semiconductors with narrow band gaps; Sn2Pb5Bi4Se13 is n-type, whereas Sn8.65Pb0.35Bi4Se15 is a p-type semiconductor with Seebeck coefficients −80(5) and 178(7) μV/K at 300 K, respectively.  相似文献   

9.
The 3JHH coupling constants in six H–XY–H systems (ethane, methylamine, methanol, hydrazine, hydroxylamine and hydrogen peroxide) and 4hJHH coupling constants in four H–...XH...Y–H, namely [H3NHNH3]+ (two arrangements), HOHNH3 and HOHOH2 have been calculated theoretically as a function of the torsion angle . For covalent situations, the corresponding Karplus equations have been fitted to calculated 3JHH=acos2 +bcos +c. The a, b and c terms have been analyzed as a function of the electronegativities of X and Y. In the case of ammonium/ammonia complexes (proton shared and not), water/ammonia, and water dimer the values are low (maximum 0.5 Hz) but follow closely a Karplus relationship. Supplementary material is available in the online version of this article at Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

10.
YBa2Cu3Ox (Y-123) and Bi2Sr2Ca1Cu2Ox (Bi-2212) films on various substrates have been prepared by Metal-Organic Deposition starting from different metallorganic fluorine-free compounds and using a very simple instrumentation. The processing conditions include a rapid pyrolysis step in air and an annealing step in oxygen for Y-123 and in air for Bi-2212. The films obtained have been characterized by X-ray diffraction (XRD) and the formation of a superconducting phase of Y-123 or Bi-2212 was confirmed measuring the critical temperature (T c) with Ac-susceptibility and resistive measurements. Microstructure and final cationic ratios have been studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).  相似文献   

11.
Manganites DyM3IMg3Mn4O12 and DyM3IBa3Mn4O12 (MI = Li, Na, K) were synthesized by the solid-state reaction of dysprosium and manganese(III) oxides and magnesium and corresponding alkali metal carbonates. The X-ray powder diffraction studies showed that the crystals are orthozhombic with the following unit cell parameters and densities: DyLi3Mg3Mn4O12a = 10.88 ?, b = 10.73 ?, c = 19.63 ?, V 0 = 1656.2 ?3, Z = 8, ρcalc = 5.36 g/cm3, ρpycn = 5.11 ± 0.05 g/cm3; DyNaMg3Mn4O12a = 10.55 ?, b = 10.72 ?, c = 18.28 ?, V 0 = 2067.4 ?3, Z = 8, ρcalc = 4.60 g/cm3, ρpycn = 4.88 ± 0.09 g/cm3; DyK3Mg3Mn4O12a = 10.56 ?, b = 10.72 ?, c = 20.89 ?, V 0 = 2206.0 ?3, Z = 8, ρcalc = 4.60 g/cm3, ρpycn = 4.92 ± 0.06 g/cm3; DyLi3Ba3Mn4O12a = 10.53 ?, b = 10.69 ?, c = 21.28 ?, V 0 = 2395.4 ?3, Z = 8, ρcalc = 5.58 g/cm3, ρpycn = 5.98 ± 0.12 g/cm3; DyNa3Ba3Mn4O12a = 10.53 ?, b = 10.74 ?, c = 23.00 ?, V 0 = 2602.3 ?3, Z = 8, ρcalc = 5.39 g/cm3, ρpycn = 5.30 ± 0.07 g/cm3; DyK3Ba3Mn4O12a = 10.52 ?, b = 10.75 ?, c = 25.69 ?, V 0 = 2905.2 ?3, Z = 8, ρcalc = 5.04 g/cm3, ρpycn = 5.00 ± 0.18 g/cm3.  相似文献   

12.
Crystals of Y0.90Tb0.10Ba2Cu3O6.75 have been prepared by spontaneous crystallization from slowly cooled non-stoichiometric melt of the system Y-Tb-Ba-Cu-O. Average size of platelet crystals having mirror surface is 2×2, the largest — 8×9 mm with thickness 0.1–0.2 mm. The crystals have been characterized by powder X-ray diffraction and electron microprobe analysis. Tetragonal symmetry of the crystals has been determined by X-ray diffraction. Magnetic susceptibility measurements have revealed that the crystals manifest transition to superconducting state without additional annealing (T c = 60 K). Structures and compositions — Y/Tb ratio (σ = 0.01) and oxygen content (σ = 0.04) — have been refined for two single crystals. Possibility of rhombic distortion of the tetragonal symmetry is discussed. __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 6, pp. 1101–1107, November–December, 2008. Original Russian Text Copyright ? 2008 by L. P. Kozeeva, N. V. Podberezskaya, N. V. Kuratieva, M. Yu. Kamaneva, and A. G. Blinov  相似文献   

13.
The double phosphate Ca9Eu(PO4)7, obtained by solid state reaction, was found to be isotypic with Ca3(PO4)2, with space group R3c and unit cell parameters a=10.4546(1) Å, c=37.4050(3) Å, V=3540.67(9) Å3, Z=6. The structure parameters refined using the Rietveld method showed that europium shares positions M1, M2 and M3 with calcium, contradicting previously published Mössbauer results. Low temperature luminescence under selective excitation of Eu3+ in Ca9Y1−xEux(PO4)7 and in Ca9Eu(PO4)7 samples was studied, confirming the Eu3+ distribution into these sites. At 10 K, 5D07F0 emission lines of Eu3+ were observed at 578.5, 579.5, 580.1 nm for the M3, M1 and M2 sites, respectively. High temperature X-ray powder diffraction evidenced a second-order phase transition around 573 °C.  相似文献   

14.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

15.
Protonic ceramic membrane fuel cells (PCMFCs) based on proton-conducting electrolytes have attracted much attention because of many advantages, such as low activation energy and high energy efficiency. BaZr0.1Ce0.7Y0.2O3−δ (BZCY7) electrolyte based PCMFCs with stable Ba0.5Sr0.5Zn0.2Fe0.8O3−δ (BSZF) perovskite cathode were investigated. Using thin membrane BZCY7 electrolyte (about 15 μm in thickness) synthesized by a modified Pechini method on NiO-BZCY7 anode support, PCMFCs were assembled and tested by selecting stable BSZF perovskite cathode. An open-circuit potential of 1.015 V, a maximum power density of 486 mW cm−2, and a low polarization resistance of the electrodes of 0.08 Ω cm2 was achieved at 700 °C. The results have indicated that BZCY7 proton-conducting electrolyte with BSZF cathode is a promising material system for the next generation solid oxide fuel cells.  相似文献   

16.
Single crystals of the title compounds were prepared using a BaCl2 flux and investigated by X-ray diffraction methods using MoKα radiation and a charge coupled device (CCD) detector. The crystal structures of these two new compounds were solved and refined in the hexagonal symmetry with space group P63/mmc, a=5.851(1) Å, c=25.009(5) Å, ρcal=4.94 g cm−3, Z=2 to a final R1=0.069 for 20 parameters with 312 reflections for Ba5Ru2Cl2O9 and space group , a=5.815(1) Å, c=14.915(3) Å, ρcal=5.28 g cm−3, Z=1 to a final R1=0.039 for 24 parameters with 300 reflections for Ba6Ru3Cl2O12. The structure of Ba5Ru2Cl2O9 is formed by the periodic stacking along [001] of three hexagonal close-packed BaO3 layers separated by a double layer of composition Ba2Cl2. The BaO3 stacking creates binuclear face-sharing octahedra units Ru2O9 containing Ru(V). The structure of Ba6Ru3Cl2O12 is built up by the periodic stacking along [001] of four hexagonal close-packed BaO3 layers separated by a double layer of composition Ba2Cl2. The ruthenium ions with a mean oxidation degree +4.67 occupy the octahedral interstices formed by the four layers hexagonal perovskite slab and then constitute isolated trinuclear Ru3O12 units. These two new oxychlorides belong to the family of compounds formulated as [Ba2Cl2][Ban+1RunO3n+3], where n represents the thickness of the octahedral string in hexagonal perovskite slabs.  相似文献   

17.
Two new ternary chromium sulfides, Ba3CrS5, and Ba3Cr2S6 were synthesized by the reaction of sulfur, barium sulfide, and chromium metal under a high pressure of 5 GPa at 1200°C. Ba3CrS5 crystallized in the hexagonal space group P63cm (No. 185) with a=9.1208(3) Å, c=6.1930(3) Å, V=446.17(3) Å3, and Z=6. It had a column structure with one-dimensional chains of [CrS3] composed of face-sharing CrS6 octahedra surrounded with Ba2+ ions. Additional S columns surrounded with Ba ions were running along with the CrS6 columns. Ba3Cr2S6 crystallized in the trigonal space group R-3c (No. 167) with a=11.8179(7) Å, c=12.796(1) Å, V=1547.7(2) Å3, and Z=6. The structure of Ba3Cr2S6 also contains [CrS3] chains but the chains are composed of octahedral and trigonal prismatic CrS6 units, which are alternately stacked in a face-sharing manner. The formal charges of Cr ions in Ba3CrS5 and Ba3Cr2S6 are 4+ and 3+, respectively.  相似文献   

18.
Complex oxides Ba6AMn4O15, where A=Mg (I) and Ni (II), belonging to the homologous series A3n+3mAnB3m+nO9m+6n (n=1, m=1) were obtained by solid state reaction method from Ba carbonate and oxides MgO, NiO, MnO2. Both new oxides are incommensurate. Their crystal structures were interpreted as composite ones with two subcells: a=10.042(3) Å, c1=4.318(2) Å, c2=2.565(1) Å, c1/c2=1.6834 for (I) and a=10.044(3) Å, c1=4.308(2) Å, c2=2.551(1) Å, c1/c2=1.6887 for (II). Magnetic susceptibility measurements in the range 2–850 K revealed antiferromagnetic correlations in Ba6MgMn4O15 (TN=7 K) and a pseudo-square-planar environment of some Ni2+ cations in Ba6NiMn4O15.  相似文献   

19.
Compounds Ce2TiO5, Ce2Ti2O7, and Ce4Ti9O24 were prepared by heating appropriate mixtures of solids containing Ce4+ and Ti3+ or Ti which were placed in a platinum-silica-ampoule combination at T = 1250°C (3d) under vacuum. The new compounds were characterized by powder patterns. We obtained Ce2TiO5 which is isotypic to La2TiO5 and crystallizes in the Y2TiO5-type (space group Pnma) with a = 10.877(6) Å, b = 3.893(1) Å, c = 11.389(8) Å, Z = 4. Ce2Ti2O7 is isotypic to La2Ti2O7 and crystallizes in the monoclinic Ca2Nb2O7 type (space group P 21) with a = 7.776(6) Å, b = 5.515(4) Å, c = 12.999(6) Å, β = 98.36(5), Z = 4. The compound Ce4Ti9O24 crystallizes orthorhombic with a = 14.082(4) Å, b = 35.419(8) Å, c = 14.516(4) Å, Z = 16. The new cerium titanate Ce4Ti9O24 is isotypic to Nd4Ti9O24 (space group Fddd (No. 70)) which represents a novel type of structure.  相似文献   

20.
Crystallographic studies of the Ba–Pt–O system have been undertaken using X-ray and electron diffraction techniques. The system is described by means of a Bap(BaxPt2+1−x)Pt4+p−2O3p−3formula which corresponds to a BaO3hexagonal based framework with Pt chains, whereprepresents the oxygen deficiency and the presence of both Pt4+and Pt2+cations in the compounds, andxa possible substitution of Pt2+by Ba2+in trigonal prismatic sites. The structure of a Ba4(Ba0.04Pt2+0.96)Pt4+2O9crystal has been solved by using 5548 X-ray difraction reflections collected on a twinned crystal. Refinements were performed with two distinct models: an “average”P321 space group and an “orthorhombic”C2 space group with cell parametersa=17.460(4) Å,b=10.085(2) Å,c=8.614(3) Å. In this structure, two Pt4+and one Pt2+cations are distributed over four Ba planes and form chains along thecaxis, consisting of two face-sharing Pt4+O6octahedra connected with one Pt2+O6trigonal prism. A lattice misfit occurs between the rigid barium lattice and the PtO3chains, giving rise to a composite structure. Twinning and domain configurations are described and taken into account in the refinement. This twinning is related to the presence of Pt2+cations, whose positions break the threefold axis symmetry. A diffraction anomalous fine structure (DAFS) study was also performed on this twinned single crystal. Anomalous scattering factorsf′ andf″ for platinum in this crystal were refined near the LIIIPt absorption edge. They confirm the weak barium occupancy of the trigonal prismataic site and the Pt4+valence of the octahedral sites. Reflection overlaps, due to twinning, flatten the DAFS sensitivity to Pt atoms in the prismatic sites and did not allow their clear valence determination, but Pt–O bond lengths agree with the presence of Pt2+cations at the center of prismatic faces. Electron diffraction patterns of powders having slightly different composition show a continuous evolution of incommensurate Bragg peaks and a weak correlation between the PtO3chains. They also confirm the composite nature and the one-dimensionality of the Bap(BaxPt2+1−x)Pt4+p−2O3p−3series, which can produce highly anisotropic physical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号