首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examine the possible electron-phonon spectra that produce both Tc=39 K and an isotope coefficient β=0.32±0.01, with Eliashberg theory. We assess the viability of the conventional electron-phonon mechanism in light of these results, compared with ab initio calculations of the electron-phonon spectrum. Comparisons are made with similar considerations for low Tc materials.  相似文献   

2.
The effect of proximity to a Mott insulating phase on the charge transport properties of a superconductor is determined. An action describing the low energy physics is formulated and different scenarios for the approach to the Mott phase are distinguished by different variation with doping of the parameters in the action. A crucial issue is found to be the doping dependence of the quasiparticle charge which is defined here and which controls the temperature and field dependence of the electromagnetic response functions. Presently available data on high-Tc superconductors are analyzed. The data, while neither complete nor entirely consistent, suggest that neither the quasiparticle velocity nor the quasiparticle charge vanish as the Mott phase is approached, in contradiction to the predictions of several widely studied theories of lightly doped Mott insulators. Implications of the results for the structure of vortices in high-Tc superconductors are determined.  相似文献   

3.
By means of numerical simulations based on Ginzburg-Landau theory, we study the vortex depinning from a columnar defect in a superconducting film. We evaluate the limiting thickness of the film, below which the depinning does not occur even under an application of the magnetic field perpendicular to the columnar defect. The limiting thickness is a measure of the pinning strength of the columnar defect. The dependence of this limiting thickness on the magnitude of the applied field is obtained for two types of columnar defects.  相似文献   

4.
The effects of mercury doping on the superconductivity, crystal structure, and electronic structure have been investigated in Hg-doped BaPb0.75Bi0.25O3 (BaPb0.75−xHgxBi0.25O3, BPHBO) by magnetic measurement, powder X-ray diffraction (XRD), and X-ray photoemission spectroscopy (XPS). At lower doping levels, the system is metallic and superconducting. However, the superconductivity is fully suppressed by Hg doping at x>0.25 and recovered with further increase in Hg content at x>0.3, showing a superconductivity reentrant phenomenon. XPS analysis reveals that BPHBO experiences dual metal-insulator transitions (MITs) at these two superconductivity points, which are accompanied by lattice distortions, suggesting that they may be driven by Peierls transitions. The first MIT may be a Mott-transition, while the second may be due to competition between the band filling effect and modification of the charge-disproportionate state.  相似文献   

5.
Measurements of the a.c.susceptibility (χ=χ′+iχ″) have been made on the Mg substituted high TC superconducting system, CuBa2(MgxCa1−x)3Cu4O12−y (Cu-1234) with x=0, 0.10 & 0.20, at different values of the a.c.field amplitude. Estimates of the intergranular critical current density(JC) made from the field dependent χ″-T curves show an improvement in the Mg-substituted Cu-1234 system. Results have been analysed in the light of the crystal structure and the superconducting anisotropy factor (γab/ξc) of the Cu-1234 system. Lower superconducting anisotropy emanating from Mg substitution has been found to be significant, resulting in better superconducting properties.  相似文献   

6.
Liquid nitrogen, liquid oxygen and liquid argon were tested as coolers for quenching performed after equilibrium of (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy (x=0.1 or 0.4) with oxygen has been attained. This compound has been previously denoted as CLBLCO, CLBCO or CaLaBaCuO. Absorption of O2 during quenching in liquid oxygen was found and measured. Such samples are oxygen inhomogeneous. The transition to superconductivity is wide and begins 20 K higher than for a homogeneous sample having the same oxygen content. Liquid nitrogen, which is usually used as an external cooling agent containing 2-3% of oxygen, also leads to notable oxygen absorption. Only quenching in oxygen free liquid argon or in oxygen free liquid nitrogen does not cause oxygen absorption and may be used for the preparation of homogeneous samples of CLBLCO after equilibration at any temperature in the range from 300 to 950 °C.  相似文献   

7.
We numerically study quantum effects in intrinsic Josephson junctions of layered high-Tc superconductors in order to explain recent experimental observations on the switching rate enhancement in the low temperature quantum regime. We pay attention to the capacitive coupling between neighboring junctions and perform simulations for the Schrödinger equation derived from the Hamiltonian describing the capacitive coupling. The simulation results reveal that the phase dynamics show synchronous behaviors when entering the quantum regime. This is qualitatively consistent with the experimental result.  相似文献   

8.
We investigate the possibility of a novel kind of optical pump probe spectroscopy where the two laser pulses are focused on different areas of the sample. The response to the destruction of the superconducting state in a large part of a mesoscopic ring is studied numerically. We use the time dependent Ginzburg-Landau equations with periodic boundary conditions and external magnetic field. We evaluate the relaxation rates of the superconducting order parameter as well as the voltage induced by the charge imbalance. Computer simulations confirm that the perturbation of superconductivity on one part of the ring induces a voltage which decelerates the superconducting electrons on the other part of the ring. This deceleration results in the decrease of the superconducting current and the superfluid density. The relaxation times are of the order of the picosecond, the induced voltage of few millivolts and the variation of the superconducting gap of 10% which we believe to be suitable for time resolved femtosecond optical spectroscopy.  相似文献   

9.
Both families of high Tc superconductors, iron pnictides and cuprates, exhibit material dependence of superconductivity. Here, we study its origin within the spin fluctuation pairing theory based on multiorbital models that take into account realistic band structures. For pnictides, we show that the presence and absence of Fermi surface pockets is sensitive to the pnictogen height measured from the iron plane due to the multiorbital nature of the system, which is reflected to the nodeless/nodal form of the superconducting gap and Tc. Surprisingly, even for the cuprates, which is conventionally modeled by a single orbital model, the multiorbital band structure is shown to play a crucial role in the material dependence of superconductivity. In fact, by adopting a two orbital model that considers the dz2 orbital on top of the dx2y2 orbital, we can resolve a long standing puzzle of why the single layered Hg cuprate have much higher Tc than the La cuprate. Interestingly, here again the apical oxygen height measured from the CuO2 plane plays an important role in determining the relative energy difference between dx2y2 and dz2 orbitals, thereby strongly affecting the superconductivity.  相似文献   

10.
The well known phenomenon of the increase of Tc of YBCO after slow cooling or low temperature annealing without change of the oxygen content, was found also for the YBCO like tetragonal superconductors of (CaxLa1−x)(LauBa1−u)2Cu3Oy (this compound has been previously denoted as CLBLCO, CLBCO or CaLaBaCuO). It has been observed at 150 and 100 °C for oxygen underdoped, optimally- and overdoped ceramics. The products retain their tetragonal unit cells. The possible reasons of this phenomenon are discussed.  相似文献   

11.
Using ALL-MBE technique, we have synthesized different heterostructures consisting of an insulator La2CuO4 (I) and a metal La1.56Sr0.44CuO4 (M) layer neither of which is superconducting by itself. The M-I bilayers were superconducting with a critical temperature Tc≈30-36 K. This highly robust phenomenon is confined within 1-2 nm from the interface and is primarily caused by the redistribution of doped holes across the interface. In this paper, we present a comprehensive study of the interface superconductivity by a range of experimental techniques including transport measurements of superconducting properties.  相似文献   

12.
We studied the doping dependence of the superconducting gap in La2−xSrxCuO4 (LSCO) by means of Andreev reflection measurements in Au/LSCO point-contact junctions. The Andreev reflection features were found to disappear at TcA close to the bulk Tc. The fit of the conductance curves with the BTK-Tanaka-Kashiwaya model gives good results if a (s+d)-wave gap symmetry is used. The low-temperature dominant isotropic gap component Δs follows very well the Tc vs. x curve, while the gap-like features observed by angle-resolved photoemission spectroscopy and tunneling scale with T. This confirms the different origin of these two energy scales at T<Tc.  相似文献   

13.
In order to reveal the role of “carrier doping” in the iron-based superconductors, we investigated the transport properties of the oxygen-deficient iron-arsenides LnFeAsO1−y (Ln=La, Ce, Pr and Nd) over a wide doping range. We found that the effect of “doping” in this system is mainly on the carrier scattering rather than carrier density, quite distinct from that in high-Tc cuprates. In the case of La system with lower Tc, the low temperature resistivity is dominated by T2 term and fairly large magnetoresistance is observed. On the other hand, in the Nd system with higher Tc, carriers are subject to stronger scattering showing nearly T-linear resistivity and small magnetoresistance. Such strong scattering appears intimately correlated with high-Tc superconductivity in the iron-based system.  相似文献   

14.
Inelastic X-ray scattering (IXS) was used to study the Cu-O bond-stretching vibrations in the static stripe phase compound La1.48Nd0.4Sr0.12CuO4. It was found that the intrinsic width in Q-space of the previously reported huge anomalous phonon softening and broadening is approximately 0.08 r.l.u. HWHM. A detailed comparison was also made to inelastic neutron scattering (INS) studies, which indicate a two-peak lineshape (with superimposed broad and narrow peaks) in the vicinity of the anomaly. The high resolution IXS data show that the narrow peak is mostly an artifact of the poor transverse Q-resolution of INS. Otherwise, the agreement between the INS and IXS was excellent.  相似文献   

15.
We present broad-band infrared ellipsometry measurements of the c-axis dielectric response of underdoped YBa2Cu3O7−d single crystals. Our data provide a clear spectroscopic distinction between the normal-state pseudogap and the superconducting gap. In particular, they establish that different energy scales are underlying the respective redistributions of spectral weight. Furthermore, our data are suggestive of a mutual competition between the two gaps and thus of an extrinsic nature of the pseudogap with respect to superconductivity.  相似文献   

16.
Underdoped cuprates are characterized by nano-scale complexity with strong spatial variation in the electronic properties, including superconductivity. It is often assumed that the stripe order underlies this spatial complexity, but the evidence of local stripe order in the superconducting phase is weak. We propose an alternative idea of electronically driven two-dimensional local order that leads to phase separation in the reciprocal space, which could be the basis for two-component superconductivity.  相似文献   

17.
A series of the SmFeAsO1−xFx and GdFeAsO1−xFx (x=0.05, 0.1, 0.15, 0.2, 0.25) samples have been prepared using nano-scaled ReF3 as the fluorine resource at a relatively low temperature. The samples have been sintered at 1100 and 1120 °C for SmFeAsO1−xFx and GdFeAsO1−xFx, respectively. These temperatures are at least 50-60° lower than other previous reports. All of the so-prepared samples possess a tetragonal ZrCuSiAs-type structure. Dramatically supression of the lattice parameters and increase in Tc proved that this low temperature process was more effective to introduce fluorine into REFeAsO. Superconducting transition appeared at 39.5 K for SmFeAsO1−xFx with x=0.05 and at 22 K for GdFeAsO1−xFx with x=0.1. The highest Tc was detected to be 54 K in SmFeAsO0.8F0.2 and 40.2 K in GdFeAsO0.75F0.25. The use of the nano-scaled ReF3 compounds has improved the efficiency of the present low temperature method in synthesizing the fluorine-doped iron-based superconductors.  相似文献   

18.
We discuss the crossover of the form of the Cu Nuclear magnetic resonance (NMR) spin echo decay at the onset of Cu wipeout in lanthanum cuprates. Experimentally, the echo decay undergoes a crossover from Gaussian to exponential form below the temperature where the Cu NMR intensity drops. The wipeout and the change in behavior both arise because the nuclei experience spatially inhomogeneous spin fluctuations at low temperatures. We argue that regions where the spin fluctuations remain fast are localized on length scales of order 1-2 lattice spacings. The inhomogeneity is characterized by the local activation energy Ea(r); we estimate the functional form of Ea(r) for points where Ea>(r)∼0.  相似文献   

19.
Bond covalency and valence of elements in HgBa2Can−1CunO2n+2+δ (n=1, 2, 3, 4) were calculated and their relationship with Tc was discussed. For both oxygen and argon annealed samples, the results indicated that with the increase of n, the trend of bond covalency of Hg-O and Cu-O was the same or opposite compared with that of superconducting temperature. This may suggest that the magnitudes of Cu-O and Hg-O bond covalency are important in governing the superconducting temperature. For the highest Tc sample, Hg had the lowest valence, implying that lower valence of Hg was preferred in order to produce higher Tc. For fixed n, the valence of Cu in oxygen annealed samples was larger than that in argon annealed samples, indicating that oxygen annealed samples produced more carriers than argon annealed samples.  相似文献   

20.
We studied the voltage and temperature dependency of the dynamic conductance of normal metal-MgB2 junctions obtained either with the point-contact technique (with Au and Pt tips) or by making Ag-paint spots on the surface of MgB2 samples. The fit of the conductance curves with the generalized BTK model gives evidence of pure s-wave gap symmetry. The temperature dependency of the gap, measured in Ag-paint junctions (dirty limit), follows the standard BCS curve with 2Δ/kBTc=3.3. In out-of-plane, high-pressure point-contacts we obtained almost ideal Andreev reflection characteristics showing a single small s-wave gap Δ=2.6±0.2 meV (clean limit).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号