首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrogen-doped perovskite-type materials, yellowish NaNbO3−xNx powders, had been developed as visible-light-sensitive photocatalysts for decomposition of gaseous 2-propanol. The NaNbO3−xNx samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) light diffuse reflectance spectroscopy, Brunauer-Emmett-Teller (BET) measurement, and scanning electron microscopy (SEM). The UV-vis spectra confirmed that the spectral response of the NaNbO3 powders could be tuned to visible-light region by nitrogen doping technique. The photocatalytic activities of NaNbO3−xNx samples were evaluated by decomposing gaseous 2-propanol into acetone and CO2 under visible-light irradiation (400 nm<λ<520 nm). The NaNbO3−xNx sample annealed at 833 K showed the highest visible-light photocatalytic activity among all the nitrogen-doped samples. The relationship between nitrogen doping amount and photocatalytic activity of NaNbO3−xNx samples was also investigated and discussed.  相似文献   

2.
We prepared NaNbO3 by several methods, namely solid-state reaction (SSR), hydrothermal (HT) and polymerized complex (PC) methods, and investigated the relationships between the photocatalytic activity and the particle size and morphology. The photocatalytic activity was evaluated by H2 evolution from an aqueous methanol solution and pure water splitting in the presence of the Pt(0.5 wt%)/NaNbO3 and RuO2(1.25 wt%)/NaNbO3, respectively. It is found that the sample prepared by PC with smallest particles exhibits the highest photocatalytic activity in both reactions. Moreover, the HT sample with the cubic and rectangular shape also shows the enhanced photocatalytic activity for H2 evolution from an aqueous methanol solution in comparison with that of the sample prepared by SSR.  相似文献   

3.
Several chemical compounds based lithium niobate have been tested in the reaction for the photocatalytic hydrogen generation. The photocatalysts have been prepared by impregnation of Nb2O5 in the aqueous solution of lithium hydroxide and then the calcination at the temperature range of 400-650 °C. In this report, we present the interesting study showing that the most active catalyst for the photocatalytic generation of hydrogen is the one containing two lithium niobate phases such as LiNbO3 and LiNb3O8. It means that the lithium niobates based catalyst without any further modification or doping can be applied as a novel material for this process.  相似文献   

4.
Two kinds of plate-like NaNbO3 were separately prepared by the one- and two-step molten salt processes via topochemical micro-crystal conversion methods. Meanwhile, the composite photocatalysts were obtained via heating the mixture of corresponding NaNbO3 powders and urea. Their photocatalytic activities were evaluated from the photodegradation of Rhodamine B under full arc and visible light irradiation of Xe lamp. The sample containing NaNbO3 prepared by the one-step molten salt process and carbon nitride displays the highest activity. The enhancement of photocatalytic activity was attributed to the surface properties and the state of the carbon nitride.  相似文献   

5.
Bi2O3/SrTiO3 composite powders have been prepared and their photocatalytic activities were investigated by photooxidation of methanol. These powders were characterized by UV-Visible diffuse reflectance spectra, SEM and X-ray diffraction (XRD). The results revealed that all the Bi2O3/SrTiO3 composite powders exhibited higher photocatalytic activity than pure SrTiO3, Bi2O3 and TiO2 (P25) under visible light irradiation (λ>440 nm). The effects of the Bi2O3 contents on the photocatalytic activities of the composite powders were examined, the photocatalytic activities increased with the content of Bi2O3 increasing to a maximum of 83% and then decreased under visible light irradiation. The effects of the calcination temperatures on the photocatalytic activities of the composite powders were also investigated.  相似文献   

6.
The nitrogen concentration effects on electronic band structures and photocatalytic performance of N-doped sodium niobate (NaNbO3) have been investigated by first-principles calculations based on density functional theory (DFT). At lower nitrogen doping levels, some localized N 2p states are formed above the valence band (O 2p) in N-doped NaNbO3, leading to the reduction of the photon transition energy in comparison to that of undoped compound. Under higher doping levels, the N 2p states mix with O 2p states and then move the top of valence band upward. Two possible mechanisms for increasing visible light absorbance in N-doped NaNbO3 are tentatively put forward according to the doping levels, which would be of importance in understanding and developing the visible-light-sensitive nitrogen-doped multimetal oxide.  相似文献   

7.
The visible-light-active xAgSbO3/NaNbO3 (x=0.5, 1, 2, 4, 6) composite photocatalysts were prepared by a conventional solid-state reaction method. Composition dependences on the structure, optical, surface photoelectronic and photocatalytic properties were investigated. The absorption edge of the composites could be red-shifted increasing the amount of AgSbO3 in comparison with that of NaNbO3. The surface photovoltage response shows the selectivity for the amount of AgSbO3 in the samples. The photocatalytic activities for Rhodamine B degradation exhibit a parabola-like behavior with the amount of AgSbO3. The highest photocatalytic activity is observed on the AgSbO3/NaNbO3 composite due to the better dispersiveness, electron transfer and surface photoelectric properties.  相似文献   

8.
A novel DME steam-reforming catalyst designed with fact database on-demand   总被引:1,自引:0,他引:1  
Novel catalysts for dimethyl ether (DME) steam reforming (SR) were designed based on catalysis database on-demand. A catalyst library consisting of precious metals loaded on various metal oxides was tested for DME SR and its elemental reactions of DME hydrolysis and MeOH SR. Platinum loaded on alumina, Pt/Al2O3, shows high activity for DME SR as reported previously. The drawback of the catalyst was also confirmed; the formation of methane leading to the reduction of hydrogen formation. From the fact database for DME hydrolysis and MeOH SR built up with high-throughput experimentation tools, the high activity of Pt/Al2O3 for DME SR is owing to its high activity on DME hydrolysis because its activity on MeOH steam reforming is not remarkable. Based on these facts, novel catalysts were designed and achieved by physical mixing of Pt/Al2O3 which reveals high activity on DME hydrolysis with an active catalyst on MeOH steam reforming. By mixing of Pt/Al2O3 with Pd/Al2O3, methane formation was suppressed without loss of hydrogen production activity.  相似文献   

9.
The iron(III)-ion doped TiO2 (Fe3+-TiO2) with different doping Fe3+ content were prepared via a sol-gel method. The as-prepared Fe3+-TiO2 nanoparticles were investigated by means of surface photovoltage spectroscopy (SPS), field-induced surface photovoltage spectroscopy (FISPS), and the photoelectrochemical properties of Fe3+-TiO2 catalysts with different Fe3+ content are performed by electrical impedance spectroscopy (EIS) as well as photocatalytic degradation of RhB are studied under illuminating. Based on the experiment results, the mechanism of photoinduced carriers separation and recombination of Fe3+-TiO2 was revealed: that is, the Fe3+ captures the photoinduced electrons, inhibiting the recombination of photoinduced electron-hole pairs, this favors to the photocatalytic reaction at low doping concentration (Fe/Ti ≤ 0.03 mol%); while Fe3+ dopant content exceeds 0.03 mol%, Fe2O3 became the recombination centers of photoinduced electrons and holes because of that the interaction of Fe2O3 with TiO2 leads to that the photoinduced electrons and holes of TiO2 transfer to Fe2O3 and recombine quickly, which is unfavorable to the photocatalytic reaction.  相似文献   

10.
This work aims to develop a rapid and efficient strategy for preparing supported metal catalysts for catalytic applications. The sonication-assisted reduction–precipitation method was employed to prepare the heterogeneous mono- and bi-metallic catalysts for photocatalytic degradation of methyl orange (MO) and preferential oxidation (PROX) of CO in H2-rich gas. In general, there are three advantages for the sonication-assisted method as compared with the conventional methods, including high dispersion of metal nanoparticles on the catalyst support, the much higher deposition efficiency (DE) than those of the deposition–precipitation (DP) and co-precipitation (CP) methods, and the very fast preparation, which only lasts 10–20 s for the deposition. In the AuPd/TiO2 catalysts series, the AuPd(3:1)/TiO2 catalyst is the most active for MO photocatalytic degradation; while for PROX reaction, Ru/TiO2, Au–Cu/SBA-15 and Pt/γ-Al2O3 catalysts are very active, and the last one showed high stability in the lifetime test. The structural characterization revealed that in the AuPd(3:1)/TiO2 catalyst, Au–Pd alloy particles were formed and a high percentage of Au atoms was located at the surface. Therefore, this sonication-assisted method is efficient and rapid in the preparation of supported metal catalysts with obvious structural characteristics for various catalytic applications.  相似文献   

11.
Fe2O3/SrTiO3 composite powders have been prepared and their photocatalytic activities were investigated by photooxidizing methanol. These powders were characterized by ultraviolet (UV)-visible diffuse reflectance spectra, scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that the Fe2O3/SrTiO3 composite powders with optimum proportion exhibited higher photocatalytic activity than pure SrTiO3, Fe2O3 and TiO2 (P25) under visible light (λ>440 nm) irradiation. The SEM image of the composite powders showed that SrTiO3 and Fe2O3 particles contacted well. Further research revealed that the calcination temperature is an important factor in the preparation of the composite powder with relatively high photocatalytic ability.  相似文献   

12.
The XPS examinations of the AgNbO3 and NaNbO3 single crystals and ceramics allowed estimate their average composition as Ag1.1Nb0.9O3 and Na1.2Nb0.9O2.9. The valence bands of the AgNbO3 compound, formed mainly of the Nb 4d, Ag 4d and O 2p states, show an energy gap about 3 eV while for the NaNbO3 compound consist of the O 2p states hybridized with the Nb 3d states and show an energy gap about 4 eV. The chemical shifts of these compounds suggest a mixed ionic and covalent character of the bonds. The broadening of the core level lines of AgNbO3 suggests a stronger structural disorder in comparison with NaNbO3 compound.  相似文献   

13.
Shaped catalysts are crucial for technological applications. In this context, we have developed Co-αAl2O3 catalyst films deposited over Cu plates to be used in hydrogen generation by hydrolysis of sodium borohydride NaBH4 in alkaline solution. The Co-αAl2O3 films were prepared by electrophoretic deposition according to six different routes. While five of them failed in fabricating adhering films, the sixth route, consisting of electrodepositing Co-impregnated αAl2O3, showed promising results. The as-obtained shaped catalysts were stable when hydrogen vigorously bubbled and catalyzed the NaBH4 hydrolysis with attractive hydrogen generation rates. These results open an alternative route for preparing shaped catalysts in this reaction.  相似文献   

14.
Surface structure of NiTi shape memory alloy (SMA) was modified by advanced oxidation processes (AOP) in an ultraviolet (UV)/H2O2 photocatalytic system, and then systematically characterized with x-ray photoelectron spectroscopy (XPS). It is found that the AOP in UV/H2O2 photocatalytic system leads to formation of titanium oxides film on NiTi substrate. Depth profiles of O, Ni and Ti show such a film possesses a graded interface structure to NiTi substrate and there is no intermediate Ni-rich layer like that produced in conventional high temperature oxidation. Except TiO2 phase, some titanium suboxides (TiO, Ti2O3) may also exist in the titanium oxides film. Oxygen mainly presents in metal oxides and some chemisorbed water and OH are found in titanium oxides film. Ni nearly reaches zero on the upper surface and relatively depleted in the whole titanium oxides film. The work indicates the AOP in UV/H2O2 photocatalytic system is a promising way to favor the widespread application of biomedical NiTi SMA by improving its biocompatibility.  相似文献   

15.
The gas-phase hydrogenolysis of methylcyclopentane (MCP) was investigated over the bimetallic Ir-Au/γ-Al2O3 catalysts. The bimetallic systems containing the atomic Au/Ir ratios in the range of 0.125-8 and a fixed total metal content of 8 wt.%, were prepared by the sequential impregnation (SI) and co-impregnation (CI) methods. The corresponding monometallic Ir/γ-Al2O3 and Au/γ-Al2O3 catalysts were also prepared. The materials were characterized by ICP, XRD, N2 adsorption, TEM, and H2 chemisorption. Highly dispersed Ir nanoparticles were obtained in all cases, while the size of Au nanoparticles increased (up to 50 nm) upon the increasing Au content in the catalyst. The monometallic gold catalyst did not adsorb H2. The incorporation of Au increased the amount of irreversible adsorbed H2 in the Ir-Au/γ-Al2O3 catalysts with respect to the monometallic ones. The products obtained in the MCP hydrogenolysis were 2-methylpentane (2-MP), 3-methylpentane (3-MP) and n-hexane (n-H). The initial rate (molecules of MCP reacted s−1 gIr−1) increased with the Au content. The deactivation was lower for bimetallic catalysts, particularly for the CI ones. The addition of Au played a significant effect on chemisorption and catalytic properties of Ir.  相似文献   

16.
The electro‐forming procedure was applied to NaNbO3:Mn and NaNbO3 insulator crystals. The electric current flow induced a transition to the metallic‐type temperature dependence of the resistance. The Mn dopant shortened the time needed for the transition. The LC‐AFM measurement showed a non‐homogeneous distribution in local resistance resulting from the electric field via the AFM tip. We ascribe this effect to percolation in the network of the highly conducting filaments, whose formation is facilitated by the Mn ions. We conclude that the insulator–metal transition is induced within a subsystem of extended defects already existing in the NaNbO3:Mn crystal lattice host. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The alumina contribution to CO oxidation in the absence of O2 on metal oxide supported catalysts was investigated by CO TPR and in-situ FTIR and DRIFT studies up to 800 °C. These tests were performed on two Al2O3 supported catalysts (1 wt.% Pt/La/γ-Al2O3 and 8 wt.% Cu/γ-Al2O3) and on two corresponding alumina supports (5 wt.% La2O3 stabilised γ-Al2O3 and high mechanical resistant spherical γ-Al2O3 particles). The quantitative determination of CO consumption and CO2 and H2 formation on the alumina supports was in agreement with a WGS reaction occurring between surface OH and CO with a predominantly 2:1 stoichiometry. In the CO TPR of metal oxide supported catalysts, in addition to the reduction of the metal, a WGS reaction took place with enhanced kinetics. This enhancement was the result of a CO spillover phenomenon from the metal to alumina hydroxyls. This phenomenon significantly affected the evaluation of the reduction degree of the supported metal and could not be neglected in the subsequent calculations.  相似文献   

18.
Lanthanide tungstates, Ln2W2O9 (Ln=La, Pr, Nd, Sm, and Gd), were prepared via the polymerized complex method at 1273 K for 2 h, and their photocatalytic activities for hydrogen and oxygen evolution were investigated. Pt-loaded Gd2W2O9 exhibited activity for H2 evolution from an aqueous methanol solution under light irradiation (λ>300 nm). The remaining Ln2W2O9 were inactive for H2 evolution due to the influence of the Ln elements and their crystal structures. All Ln2W2O9 were inactive for O2 evolution from an aqueous AgNO3 solution due to the lack of O2 evolution sites on the surface.  相似文献   

19.
A novel Cr2O3/TNTs nanocomposite was prepared by loaded suitable amount of amorphous Cr2O3 on titanate nanotubes (TNTs) via hydrothermal reaction and impregnation process. XRD, SEM and TEM results demonstrated that the amorphous Cr2O3 nanoparticles were homogeneously dispersed on the surface of TNTs. The diffuse reflectance UV–visible absorption spectra exhibited that the spectral response of TNTs was extended to visible light region by coupled with Cr2O3. The 2.5Cr2O3/TNTs nanocomposite showed the highest activity of hydrogen generation by photocatalytic water-splitting under visible light irradiation (λ > 400 nm). The high activity of H2 evolution for Cr2O3/TNTs nanocomposites was associated with the donor level in the forbidden band of TNTs semiconductor provided by dopant Cr3+ and a probably photocatalytic mechanism was proposed.  相似文献   

20.
The pure SrNb2O6 powders were prepared at 1400 °C by a conventional solid-state method and characterized by X-ray powder diffraction and UV-vis diffuse reflection spectrum. The powders of Nb2O5 and SrNb2O6 were ball-milled together and annealed to form the Nb2O5/SrNb2O6 composite. Photocatalytic activities of the composites were investigated on the degradation of methyl orange. The results show that the proportion of Nb2O5 to SrNb2O6 and the annealing temperature greatly influence the photocatalytic activities of the composites. The best photocatalytic activity occurs when the weight proportion of Nb2O5 to SrNb2O6 is 30% and the annealing temperature is 600 °C. The tremendously enhanced photocatalytic activity of the Nb2O5/SrNb2O6 composite compared to Nb2O5 or SrNb2O6 is ascribed to the heterojunction effect taking place at the interface between particles of Nb2O5 and SrNb2O6. The powders also show a higher photocatalytic activity than commercial anatase TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号