首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper focuses the influence of porous morphology on the microstructure and optical properties of TiO2 films prepared by different sol concentration and calcination temperatures. Mesoporous TiO2 thin films were prepared on the glass substrates by sol-gel dip coating technique using titanium (IV) isopropoxide. Porous morphology of the films can be regulated by chemical kinetics and is studied by scanning electron microscopy. The optical dispersion parameters such as refractive index (n), oscillator energy (Ed), and particle co-ordination number (Nc) of the mesoporous TiO2 films were studied using Swanepoel and Wemple-DiDomenico single oscillator models. The higher precursor concentration (0.06 M), films exhibit high porosity and refractive index, which are modified under calcination treatment. Calcinated films of low metal precursor concentration (0.03 M) possess higher particle co-ordination number (Nc = 5.05) than that of 0.06 M films (Nc = 4.90) due to calcination at 400 °C. The lattice dielectric constant (E) of mesoporous TiO2 films was determined by using Spintzer model. Urbach energy of the mesoporous films has been estimated for both concentration and the analysis revealed the strong dependence of Urbach energy on porous morphology. The influence of porous morphology on the optical dispersion properties also has been explained briefly in this paper.  相似文献   

2.
Anatase TiO2 nanowires with a diameter of 5-10 nm and length of 500 nm to 2 μm have been successfully synthesized by modifying TiO2 nanoparticles (P25) using the microwave heating method. The microwave power, reaction pressure, and reaction time for the synthesis of TiO2 nanowires were 500 W, 0.5-3.0 MPa (corresponding to a temperature range of 175-260), and 40-70 min, respectively. X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and the BET techniques were used to investigate the phase structures, morphologies, and specific surface areas of the TiO2 nanowires. The effects of reaction time, pressure, and different post-treatment processes on the microstructures of TiO2 nanowires were discussed. It has been shown that the microwave heating method is efficient in transforming TiO2 nanoparticles to anatase TiO2 nanowires.  相似文献   

3.
Ultrafine nanowires of Fe-Co with a diameter around 15 nm have been fabricated by electrodeposition method using anodic porous alumina as a template. The alloy nanowires were in the form of arrays and consisting of polycrystalline structures. They showed obvious shape anisotropy parallel to the axis of nanowires and the perpendicular coercivity (Hc) was found to be 2576.8 Oe which is higher than any coercivity value reported in the literature. The effects of critical factors such as heat treatment and temperature of annealing on the structure and magnetic properties of the ultrafine nanowire arrays were studied and discussed.  相似文献   

4.
J. Jun 《Applied Surface Science》2009,255(20):8544-8550
We have fabricated CuO-core/TiO2-shell one-dimensional nanostructures by coating the CuO nanowires with MOCVD-TiO2. The structure of the core/shell nanowires has been investigated by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis techniques. The CuO-cores and the TiO2-shells of the as-synthesized nanowires have been found to have crystalline monoclinic CuO and crystalline tetragonal anatase TiO2 structures, respectively. The CuO-core/TiO2-shell nanowires are winding and has rougher surface, whereas the CuO nanowires are straight and have smoother surface.Influence of the substrate temperature and the growth time on the structure such as the morphology, size, and crystallographic orientation of CuO nanowires synthesized by thermal oxidation of Cu foils have also been investigated. All the nanowires have only the CuO phase synthesized at 600 °C, whereas those synthesized at 400 °C have both CuO and Cu2O phases. The highest density of CuO nanowires with long thin straight morphologies can be obtained at 600 °C. In addition, the growth mechanism of the CuO nanowires has been discussed.  相似文献   

5.
The electrochemical activity of an electrode of carbon nanotubes (CNTs) attached with TiO2 nanoparticles was investigated. A chemical-wet impregnation was used to deposit different TiO2 particle densities onto the CNT surface, which was chemically oxidized by nitric acid. Transmission electron microscopy showed that each TiO2 nanoparticle has an average size of 30-50 nm. Nitrogen physisorption measurement indicated that the porosity of CNTs is partially hindered by some titania aggregations at high surface coverage. Cyclic voltammetry measurements in 1 M H2SO4 showed that (i) an obvious redox peak can be found after the introduction of TiO2 and (ii) the specific peak current is proportional to the TiO2 loading. This enhancement of electrochemical activity was attributed to the fact that TiO2 particles act as a redox site for the improvement of energy storage. According to our calculation, the electrochemical capacitance of TiO2 nanocatalysts in acid electrolyte was estimated to be 180 F/g. Charge-discharge cycling demonstrated that the TiO2-CNT composite electrode maintains stable cycleability of over 200 cycles.  相似文献   

6.
Porous surface-fluorinated TiO2 (F-TiO2) films were prepared through PEG modified sol-gel method and surface fluorination. The as-prepared films were characterized with XRD, FTIR, AFM, XPS and UV-vis DRS. The effects of surface fluorination on the photocatalytic activity and hydrophilicity of porous TiO2 film were studied by photocatalytic degradation of rhodamine B (RhB) as well as water contact angle (CA) on porous TiO2 film. The results showed that the surface fluorination increased the adsorption of RhB on the porous TiO2 film and enhanced the photocatalytic degradation of RhB. The concentration and pH of NaF solutions affected much the photocatalytic activity of porous TiO2 film. Porous F-TiO2 film prepared in 40 mM NaF solution at pH 4.0 showed the highest photocatalytic activity. Because of its porous structure, the porous F-TiO2 film had original water CA of 22.7°, which is much smaller than that of normal F-TiO2 film. Under UV light irradiation, the water CA of porous F-TiO2 film decreased to 5.1° in 90 min.  相似文献   

7.
Flexible quasi-solid-state dye-sensitized solar cells (DSSCs) with porous poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP)/polyethylene oxide-co-polypropylene oxide-co-polyethylene oxide (P123) electrolyte membranes were fabricated and their photocurrent–voltage (IV) characteristics are studied. Flexible TiO2 photoelectrodes were prepared using the compression method and porous PVdF-HFP/P123 membranes, by the nonsolvent-induced phase inversion technique. To activate the electrolyte membrane, the membrane was immersed in liquid-state electrolyte. Increased compression pressure improved the interconnection between TiO2 nanoparticles, enhancing the photovoltaic performances of the flexible liquid-state DSSCs to a maximum of 3.92% efficiency. Meanwhile, the overall pore structure of the PVdF-HFP/P123 membranes was controlled by varying the blend ratio of P123 to PVdF-HFP. Membranes higher in P123 content gave larger pores and pore volume, increasing the electrolyte uptake of the porous membrane, and thus the ionic conductivity of the electrolyte membrane as well. The photovoltaic characteristics of the flexible quasi-solid-state DSSCs containing a porous PVdF-HFP/P123 electrolyte membrane showed a maximum at 50 wt% P123 content, which gave a short-circuit current density (Jsc) value of 7.28 mA/cm2, an open-circuit voltage (Voc) of 0.67 V, a fill factor (FF) of 0.61 and an energy conversion efficiency (η) of 2.98%. Furthermore, the device designed in this study showed good durability compared to those based on liquid-state electrolyte.  相似文献   

8.
Highly ordered mesoporous Co3O4, NiO, and their metals were synthesized by nanocasting method using there corresponding mesoporous SBA-15 silica as a template. The obtained porous metal oxides have high surface areas, large pore volume, and a narrow pore size distribution. The N2-adsorption data for mesoporous metal oxides have provided the BET area of 257.7 m2 g−1 and the total pore volume of 0.46 cm3 g−1. The mesoporous metals were employed as a catalyst in the synthesis of (S)-3-pyrrolidinol from chiral (S)-4-chloro-3-hydroxybutyronitrile, and a high yield to (S)-3-pyrrolidinol-salt was obtained on the mesoporous Co metal catalyst.  相似文献   

9.
The structure and photoluminescence properties of TiO2-coated ZnS nanowires were investigated. ZnS nanowires were synthesized by thermal evaporation of ZnS powder and then coated with TiO2 by using the metal organic chemical vapor deposition (MOCVD) technique. We performed scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and photoluminescence (PL) spectroscopy to characterize the as-synthesized and TiO2-coated ZnS nanowires. TEM and XRD analyses revealed that the ZnS core and the TiO2 coatings had crystalline zinc blende and crystalline anatase structures, respectively. PL measurement at room temperature showed that the as-synthesized ZnS nanowires had two emissions: a blue emission centered in the range from 430 to 440 nm and a green emission at around 515 nm. The green emission was found to be dominant in the ZnS nanowires coated with TiO2 by MOCVD at 350°C for one or more hours, while the blue emission was dominant in the as-synthesized ZnS nanowires. Also the mechanisms of the emissions were discussed.  相似文献   

10.
Au nanoparticles deposited on mesoporous TiO2-B nanofibers have been prepared, characterized, and used to catalyze photoreactions of iodomethane. High-density gold-particle deposition on TiO2-B is obtained by electrostatic and/or chemical force between the particles of TiO2-B and Au capped with -SC(H)(CO2H)(CH2CO2H) through pH control. The capping groups on the gold particles can be removed after 400 °C calcination. It is found that the nature of the inorganic acids used for pH adjustment has effects on particle morphology and deposition. Two other methods, i.e., preparation of TiO2-B nanofibers in the presence of gold particles and preparation of gold nanoparticles in the presence of TiO2-B particles (deposition-precipitation method), are also investigated. However, the former method produces a low-density deposition and the latter one induces a morphology change of the TiO2-B and an increase of the Au in size. Fourier transform infrared spectroscopy has been employed to study and to compare the photoreactions of CH3I on TiO2-B and Au/TiO2-B and the effect of O2. The presence of gold particles on TiO2-B increases the efficiency of CH3I photodegradation, forming adsorbed methoxy and formate. The role of gold is also discussed.  相似文献   

11.
We study the temperature-dependent transformation of two distinctly synthesized TiO2 nanoparticles from the anatase to the rutile phase. These studies are carried out over the temperature range extending from room temperature to an excess of 800 °C where the anatase to rutile conversion is found to occur. Results obtained for both a sol-gel-generated nanocolloid (3-20 nm) and a sol-gel-generated micelle nanostructure (∼40 nm) are evaluated. While the TiO2 nanocolloid structures aggregate to form larger crystallites as a function of increasing temperature with sizes comparable to the sol-gel-generated micelle structures, the resulting anatase crystallites, which are of a diameter 40-50 nm, appear to transform to comparable or slightly smaller rutile structures at 800 °C. This is in contrast to the transformation to larger rutile structures, observed for larger anatase particles. The importance of kinetic effects is considered as it enhances the rate of anatase to rutile conversion. These characteristics are established using a combination of Raman spectroscopic, X-ray diffraction, and scanning electron microscopy. The relative playoffs of the Raman and X-ray diffraction techniques are considered as they are used for the analysis of particles at the nanoscale, especially when phase transformations are evaluated.  相似文献   

12.
Optical properties of TiO2 nanowires, synthesized by two-step thermal evaporation process, have been studied experimentally and theoretically. Based on the theoretical method optical constants of nanowires have been calculated with the use of the effective medium approximation (EMA). As evidenced by X-ray diffraction patterns our synthesized nanowires, whose diameters and lengths were within the ranges of 50-90 nm and 500-1500 nm, respectively, were found to be crystalline rutile TiO2 with the major refraction being along the (1 1 0) direction. The experimental data of the reflectance of TiO2 nanowires has been obtained using spectrometer in wavelength 250-800 nm, and then, compared with the spectrum of reflectance predicted by the EMA theoretical model. Our measured experimental optical data has been found to be in good accord with our predicted results spectrum with the use of the EMA modeling; this agreement indicates that our estimation of the volume fraction from atomic force microscopy (AFM) data was accurate.  相似文献   

13.
Phase transition from anatase to rutile for the 70 nm TiO2 crystallite has been investigated by the time differential perturbed angular correlation (TDPAC) technique. The study involved the annealing of the TiO2 nanocrystals, adsorbed with the nuclear probe (181Hf/181Ta) at trace level, at different temperatures for different durations. The TDPAC measurement was also supported by XRD measurement where the width of the peaks increases with the increase in annealing temperature indicating a crystal growth. The samples annealed up to 823 K for 4 h showed no phase transition, except for the growth of the crystallites. However, it showed phase transition at the same temperature (823 K), when annealed for longer duration, indicating the slower kinetics of the phase transition process. Further the sample, when annealed at 1123 K for 4 h, showed phase transition. It has also been observed that the 181Hf tracer, adsorbed on 70 nm anatase TiO2, diffuses from surface to bulk during the phase transition process and the extent of diffusion in anatase differs from that in rutile phase. However, surface to bulk mass-transfer is found to play a significant role in the phase transition process.  相似文献   

14.
Fe0.95Pd0.05 nanowires were fabricated by the electrodeposition in porous anodic aluminum oxide templates and post-annealed at 300–700 °C. Transmission electron microscopy observations demonstrated the isolated nanowires to have polycrystalline structure. Magnetic measurements, however, showed improvement of both coercivity and squareness with the addition of 5 at% Pd in the Fe nanowires as well as proper annealing temperatures of about 500 °C.  相似文献   

15.
We have investigated the Li-ion battery anode properties of several kinds of mesoporous composites of carbon and titanium dioxides (titania, TiO2) prepared by tri-constituent co-assembly method. The maximum reversible capacity (197 mAh/g) at current density of 50 mA/g was obtained for the composite of TiO2:carbon=7:3 calcined at 600 °C. It was also found that the composite maintained the high reversible capacity as large as 109 mAh/g even at the high current density of 1000 mA/g.  相似文献   

16.
In-doped Ga2O3 zigzag-shaped nanowires and undoped Ga2O3 nanowires have been synthesized on Si substrate by thermal evaporation of mixed powders of Ga, In2O3 and graphite at 1000 °C without using any catalyst via a vapor-solid growth mechanism. The morphologies and microstructures of the products were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and photoluminescence spectroscopy (PL). The nanowires range from 100 nm to several hundreds of nanometers in diameter and several tens of micrometers in length. A broad emission band from 400 to 700 nm is obtained in the PL spectrum of these nanowires at room temperature. There are two blue-emission peaks centering at 450 and 500 nm, which originate from the oxygen vacancies, gallium vacancies and gallium-oxygen vacancy pairs.  相似文献   

17.
Rare earth metal seed Tb was employed as catalyst for the growth of GaN wires. GaN nanowires were synthesized successfully through ammoniating Ga2O3/Tb films sputtered on Si(1 1 1) substrates. The samples characterization by X-ray diffraction and Fourier transform infrared indicated that the nanowires are constituted of hexagonal wurtzite GaN. Scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy showed that the samples are single-crystal GaN nanowire structures. The growth mechanism of the GaN nanowires is discussed.  相似文献   

18.
This work reports the preparation of TiO2 by decomposition of a metallo-organic precursor (MOD process) in the pores of an α-NbPO5 glass-ceramic monolith (PGC-NbP) and the study of the TiO2 anatase-rutile transition phase. The impregnation of titanium di-(propoxy)-di-(2-ethylhexanoate) in the PGC-NbP was confirmed by diffuse reflectance infrared spectroscopy. In the restrictive porous environment the decomposition of the metallo-organic compound exhibits a lower initial decomposition temperature but a higher final decomposition temperature, in comparison to the free precursor. The pure TiO2 rutile phase is formed only above 700 °C when the titanium precursor is decomposed outside the pores. The TiO2 anatase obtained inside the PGC-NbP was stabilized up to 750 °C and exhibits a smaller average crystallite size in comparison with the MOD process performed without PGC-NbP. Furthemore, the temperature of the TiO2 anatase-rutile transformation depends on crystallite size, which was provided by XRD and Raman spectroscopy. The precursor impregnation-decomposition cycle revealed a linear mass increment inside PGC-NbP. Micro-Raman spectroscopy shows the presence of a gradient concentration of the TiO2 inside the PGC-NbP. The use of the MOD process in the PGC-NbP pores has several advantages: control of the amount and the nature of the phase formed and preservation of the pore structure of PGC-NbP for subsequent treatments and reactions.  相似文献   

19.
To study the relationship between the phase structures of TiO2 and the photoinduced hydroxyl radicals (OH), TiO2 nanocrystallines were synthesized by a hydrolysis-precipitate method using tetrabutylorthotitanate (TBOT) as precursor, and then calcined at 450, 600, 700, 800 and 900 °C for 2 h, respectively. The calcined samples were characterized by X-ray diffraction and N2 sorption. The formation rate of OH on the surface of UV-illuminated TiO2 was detected by the photoluminescence (PL) technique using terephthalic acid as a probe molecule. The results show that with increasing calcined temperatures, the amorphous (Am) TiO2 precursor begins to turn into anatase (A) at 450 °C and rutile (R) phase appears at 600 °C, which is completely turned into the rutile phase at 900 °C. The BET specific surface areas of the catalyst decrease as the calcined temperatures increase. TiO2 sample calcined at 600 °C, with a mixed phase of anatase and rutile, shows the highestOH formation rate, and the order of the OH formation rate is as follows: A+R>A>R>Am. Phase structures of TiO2 play a more important role than specific surface areas in the OH formation rate. Two phase structure of anatase and rutile with a proper ratio is beneficial to the OH formation due to decrease of the combination rate of photo-generated electrons and holes. Our experimental result implies that the mixed phase of anatase and rutile can markedly enhance the photocatalytic activity of TiO2.  相似文献   

20.
In this work, hierarchically porous TiO2–B nanoflowers have been successfully synthesized via a facile solvothermal method followed by calcination treatment. The TiO2–B nanoflowers are constructed by thin nanosheets, presenting ultrahigh specific surface area, up to 214.6 m2 g−1. As anode materials for Li-ion batteries, the TiO2–B sample shows high reversible capacity, excellent cycling performance and superior rate capability. The specific capacity of TiO2–B could remain over 285 mA h g−1 at 1 C and 181 mA h g−1 at 10 C rate after 100 cycles. We believe that the pseudocapacitive mechanism, ultrahigh surface area and scrupulous nanoarchitecture of the TiO2–B are responsible for the enhancement of electrochemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号