首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sol-gel nanostructured titania materials have been reported to have applications in areas ranging from optics via solar energy to gas sensors. In order to enhance the photocatalytic activity, there are many studies regarding the doping of titanium dioxide (TiO2) material with either non-metals (S, C, N, P) or metals (Ag, Pt, Nd, Fe). The present work has studied some un-doped and Pd-doped sol-gel TiO2 materials (films and gels), with various surface morphologies and structures, obtained by simultaneous gelation of both precursors Ti(OEt)4 and Pd(acac)2. Their structural evaluation and crystallization behavior with thermal treatment were followed by DTA/TG analysis, infrared (IR) spectroscopy, Fourier transform infrared (FTIR), spectroellipsometry (SE), X-ray diffraction (XRD) and atomic force microscope (AFM). The influence of Pd on TiO2 crystallization for both supported and un-supported materials was studied (lattice parameters, crystallite sizes, internal microstrains). The changes in the optical properties of the TiO2-based vitreous materials were correlated with the changes of the structure. The hydrophilic properties of the films were also connected with their structure, composition and surface morphology.  相似文献   

2.
Titanium dioxide (TiO2) nanoparticles co-doped with N and Fe were prepared via modified sol-gel process. The products were characterized by transmission electron microscopy (TEM), N2 adsorption, X-ray diffraction (XRD), Raman spectroscopy, UV-vis spectroscopy, photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS). It is shown that the prepared TiO2 particles were less than 10 nm with narrow particle size distribution. The addition of MCM-41 caused the formation of Ti-O-Si bond which fixed the TiO2 on MCM-41 surface, thus restricted the agglomeration and growth of TiO2 particles. The photocatalytic performance in the degradation of methylene blue showed that N, Fe co-doped TiO2 exhibited much higher photocatalytic activity than doped sample with nitrogen or Fe3+ alone under both UV and visible light. N, Fe co-doping decreased the loss of doping N during the degradation reaction, thus increased the photocatalytic stability. It was also found that the nitridation time had significant influence on the photocatalytic activity of prepared TiO2 catalysts.  相似文献   

3.
A conducting polymer composite poly(3-dodecylthiophene)/titanium dioxide (P3DDT/TiO2) nanocomposite was first synthesized through the ultrasonic method. The results from X-ray diffraction (XRD) and infrared spectroscopy (IR) show that there is chemical interaction in the composite. Transmission electron microscope (TEM) and scanning electron microscope (SEM) depict the morphology of the samples, defining that TiO2 was successfully coated by poly(3-dodecylthiophene) molecules. The energy gap of the poly(3-dodecylthiophene)/titanium dioxide composite is lower to 0.76 eV compare with poly(3-dodecylthiophene) and titanium dioxide separately, and it also shows that the optical performance of the new material is far superior than P3DDT or TiO2 separately by ultraviolet-visible spectra (UV) and fluorescence spectroscopy (PL). Solar cell was sensitized by P3DDT/TiO2. A solar-to-electric energy conversion efficiency of 0.188% was attained with the system.  相似文献   

4.
The thermal phase transition of RbMnFe(CN)6 has been observed by Mn and Fe 3p-1s X-ray emission spectroscopy (XES) and 1s X-ray absorption spectroscopy (XAS). The thermal variations of the spin states and the valences of Mn and Fe were determined to be Mn2+(S=5/2)-NC-Fe3+(S=1/2) for the high-temperature (HT) phase and Mn3+(S=2)-NC-Fe2+(S=0) for the low-temperature (LT) phase. These transitions are thus caused by charge transfer between Mn and Fe. The temperature dependences of Mn and Fe 3p-1s XES and 1s XAS were observed as the composition of the spectra of the HT and LT phases. The ratios of the HT component in each spectrum show good agreement with the thermal transition curves observed with magnetic susceptibility measurements.  相似文献   

5.
Macroporous nanocrystalline (Sr,Pb)TiO3 solid solutions were prepared by a facile self-propagating combustion method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectrum (EDS) and X-ray photoelectron spectroscopy (XPS). (Sr,Pb)TiO3 solid solutions showed enhanced photocatalytic activity for the degradation of methyl orange (MO) than pure SrTiO3 and an optimum performance was observed for Sr29/32Pb3/32TiO3. The possible mechanism for the enhanced photocatalytic activity on (Sr,Pb)TiO3 solid solutions was proposed.  相似文献   

6.
彭瑞祥  陈冲  沈薇  王命泰  郭颖  耿宏伟 《物理学报》2009,58(9):6582-6589
以局域规整聚(3-己基噻吩) (P3HT)制备了TiO2/聚合物型双层结构光伏电池.利用稳态电流-电压测试和动态强度调制光电压谱,结合差热分析、吸收光谱和荧光光谱, 研究了非晶支化聚亚乙基亚胺(BPEI)作为P3HT膜层的添加成分对TiO2/P3HT双层电池性能的影响.由于P3HT链的高结晶性,使得TiO2/P3HT界面接触不好,导致电池性能差.当在P3HT中共混重量比WBPEI/P3HT=1%—5%的BPEI时,电池性能得到显著改善;尤其是当WBPEI/P3HT= 1%时,电池表现出近0.8V的开路电压和20μA/cm2的短路电流.结果表明BPEI对电池性能的影响不是源于P3HT-BPEI共混体系光学性能的变化,而主要是由于其改变了TiO2/P3HT界面接触性能.BPEI对TiO2/P3HT界面接触有两个相互竞争的影响,这取决于P3HT-BPEI共混体系的组成.一方面,通过降低P3HT的结晶度和增强与TiO2表面的相互作用,改善P3HT链在TiO2 表面的附着;另一方面,当BPEI含量过高时,BPEI在TiO2表面的附着量将增加,反而会阻碍P3HT与TiO2表面的接触.良好的TiO2/P3HT界面接触有利于提高激子的界面分离效率、光生电子的寿命和电池效率.本文结果有望为聚合物光伏电池性能的改善提供新的认识和方法. 关键词: 聚(3-己基噻吩) 二氧化钛 共轭聚合物 光伏电池  相似文献   

7.
B-doped together with Ag-loaded mesoporous TiO2 (Ag/B–TiO2) was prepared by a two-step hydrothermal method in the presence of boric acid, triblock copolymer surfactant, and silver nitrate, followed by heat treatment. The obtained samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption–desorption. It was revealed that all samples consist of highly crystalline anatase with mesoporous structure. For Ag/B–TiO2, B was doped into TiO2 matrix in the form of both interstitial B and substitutional B while Ag was deposited on the surface of B–TiO2 in the form of metallic silver. Compared with the single B-doped or Ag-loaded TiO2 one, mesoporous Ag/B–TiO2 exhibits much higher visible light photocatalytic activity for the degradation of Rhodamine 6G, which can be ascribed to the synergistic effects of B doping and Ag loading by narrowing the band gap of the photocatalyst and preventing the fast recombination of the photogenerated charge carriers, respectively.  相似文献   

8.
Nitrogen-doped TiO2 (N-TiO2) nanoparticles have been successfully prepared via a direct and simple hydrothermal reaction of a commercial Degussa P25 with triethanol amine as solvent and nitrogen source. As-prepared N-TiO2 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible light (UV-vis) absorption spectra, electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS) techniques. The results confirm that hydrothermal reaction is an effective way to incorporate nitrogen into the TiO2 lattice, especially nitrogen substitute for titanium. The nitrogen concentration in TiO2 can be as high as 21% (molar ratio), which is described as Ti1−yO2−xNx+y (in this paper, x=0.36, y=0.27, i.e., Ti0.73O1.64N0.63). The chemical statuses of N have been assigned to N-Ti-O and O-N-O in the TiO2 lattice as identified by XPS. Photocatalytic degradation of methyl orange has been carried out in both UV-vis (simulated solar light) and the visible region (λ>400 nm). N-TiO2 exhibits higher activity than the Degussa P25 TiO2 photocatalyst, particularly under visible-light irradiation. This study has developed a promising and practical pathway to new nitrogen-doped photocatalysts.  相似文献   

9.
Fe-doped TiO2 powder was prepared by high-energy ball milling, using TiO2 Degussa P-25 and α-Fe powders as the starting materials. The structure and magnetic properties of the Fe-doped TiO2 powder were studied by X-ray diffraction, 57Fe Mossbauer spectroscopy and vibrating sample magnetometer. The Reitveld refinement of XRD revealed that ball milling not only triggered incorporation of Fe in TiO2 lattice but also induced the phase transformation from anatase to rutile in TiO2 and consequently the milled Fe-doped TiO2 powder contained only rutile.57Fe Mössbauer effect measure showed that Fe atoms existed in Fe2+ and Fe3+ state, which were assigned to the solid solution FexTi1−xO2. The magnetization measurements indicated that the milled Fe-doped TiO2 powder was ferromagnetic above room temperature. The ferromagnetism in our milled Fe-doped TiO2 powder seemingly does not come from Fe and iron oxides particles/clusters but from the Fe-doped TiO2 powder matrices.  相似文献   

10.
The nanoparticles of TiO2 modified with carbon and iron were synthesized by sol-gel followed solvothermal method at low temperature. Its chemical composition and optical absorption were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence emission spectroscopy (PL), UV-vis absorption spectroscopy, and electron paramagnetic resonance (EPR). It was found that carbon and iron modification causes the absorption edge of TiO2 to shift the visible light region. Fe(III) cation could be doped into the matrix of TiO2, by which could hinder the recombination rate of excited electrons/holes. Superior photocatalytic activity of TiO2 modified with carbon and iron was observed for the decomposition of acid orange 7 (AO7) under visible light irradiation. The synergistic effects of carbon and iron in modified TiO2 nanoparticles were responsible for improving visible light photocatalytic activity.  相似文献   

11.
Ag/TiO2 sol with narrow particle size distribution was synthesized using TiCl4 as the starting material. TiCl4 was converted to Ti(OH)4 gel. The Ag/TiO2 sol was prepared by a process where H2O2 was added and then heated at 90–97 °C. After condensation reaction and crystallization, a transparent sol with suspended Ag/TiO2 was formed. Ag/TiO2 was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, contact angle analysis, and X-ray photoelectron spectroscopy. The photocatalytic properties of Ag/TiO2 film were evaluated by degradation of methylene blue in aqueous solution under UV light irradiation. The suspended Ag/TiO2 particles were rhombus primary particles with the major axis ca. 40 nm and the minor axis ca. 10 nm. Ag nanoparticles were well dispersed on TiO2 and the particle size was only 1–2 nm. Ag could restrain the recombination of photo-generated electrons and holes effectively. Transparent thin films could be obtained through dip-coating glass substrate in the sol. The thin film had strong hydrophilicity after being illuminated by UV light. Ag/TiO2 film showed a significant increase in photocatalytic activity compared to the TiO2 film. The high amount of surface hydroxyls on Ag/TiO2 film also played an important role in its photocatalytic activity.  相似文献   

12.
In this research, dye-sensitized solar cells based on TiO2 micro-pillars fabricated by inductive couple plasma etcher were investigated by analyses of X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, ultraviolet-visible absorption spectra (UV-vis), and current-voltage characteristics. X-ray diffraction patterns show that the TiO2 anatase phase forms while sintering at 450 °C for 30 min. The SEM images reveal that the diameter and height of TiO2 micro-pillars are about 3 and 0.8 μm, respectively. The measurements of contact angle between TiO2 micro-pillars and deionized water (DI water) reveal that the TiO2 micro-pillars is super-hydrophilic while annealed at 450 °C for 30 min.The absorption spectrum of TiO2 micro-pillars is better than TiO2 thin film and can be widely improved in visible region with N3 dye adsorbed. The results of current-voltage (I-V) characteristics analysis reveal that dye-sensitized solar cell with TiO2 micro-pillars electrode has better I-V characteristics and efficiency than TiO2 film electrodes. This result may be due to the annealed TiO2 micro-pillars applied on the electrode of dye-sensitized solar cell can increase the contact area between TiO2 and dye, resulting in the enhancement of I-V characteristics and efficiency for dye-sensitized solar cell.  相似文献   

13.
TiO2 based inverted polymer solar cells (PSCs) with a structure of fluorine-doped tin oxide (FTO)/TiO2/P3HT:PCBM/PEDOT:PSS/Ag presented excellent air stabilities,; the power conversion efficiency (PCE) of devices exhibited only 15 % decay as compared to the highest value while being exposed in air-condition for more than 20 days. Interestingly, an overall enhancement of PCE from 3.5 % to 3.9 % was observed while the PSCs were exposed in air-condition up to 3 days; the improvement of performance was attributed to the TiO2 films’ oxygen and water protection effect and the oxidation of Ag, which will benefit to form an effective work function match with the HOMO of P3HT leading to improved ohmic contact. However, the performance slowly decreased when the exposure time remains longer due to the physical adsorbed oxygen. UV–ozone treatment on the TiO2 films’ leads to the formation of a metal-deficient oxide that results in a decreased PCE for the devices. Finally, X-ray photo-emission spectroscopy (XPS) was used to analyze the compositional changes of the TiO2 films while they were exposed in air-condition or treated by UV–ozone.  相似文献   

14.
C, N, S-tridoped TiO2 nanotubes were synthesized via hydrothermal synthesis and post-treatment, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), the Brunauer-Emmett-Teller method (BET), and UV-vis diffuse reflectance spectroscopy (DRS). The UV-diffuse reflectance spectra of all the C, N, S-tridoped TiO2 nanotubes greatly extended the absorption edge to the visible light region, and the absorbance in the visible region increased with increasing molar ratio of thiourea to Ti (R), which could be attributed to C, N, S-tridoping in the form of cation C-doping, interstitial N-doping, cation S-doping, and adsorbed ions’ states. The photocatalytic activity of C, N, S-tridoped TiO2 nanotubes was evaluated by photocatalytic photodegradation of potassium ethyl xanthate (KEX) under visible light irradiation. It was found that the photocatalytic activity of the prepared samples increased with increasing molar ratio of thiourea to Ti (R). At R=6, the photocatalytic activity of the tridoped sample TNTS-6 reached a maximum value. With further increase in R, photocatalytic activity of the sample decreased, which could be attributed to the high visible light activity resulting from the balance between visible light absorption and recombination of electron/hole pairs.  相似文献   

15.
N, S-doped TiO2 anode effect on performance of dye-sensitized solar cells   总被引:1,自引:0,他引:1  
The modification of non-metallic elements N and S to nanocrystalline TiO2 anode results in the energy gap is reduced to 2.63 eV and a strong redshift to the visible region occurred in the UV–visible spectrum. Poly (3-decylthiophene) (P3DT) is synthesized. Ultraviolet–visible spectra (UV–vis) shows that the light absorption of P3DT (Poly (3-decylthiophene)) and N719 (RuL2(NCS)2:2TBA (L=2,2′-bipyridyl-4, 4′-dicarboxylic acid)) are complementary to cover the entire visible region. Solar cell based on N–S/TiO2 is co-sensitized by P3DT and N719. The photoelectric conversion efficiency of co-sensitized solar cell increases 56.8% comparing with the single dye-sensitized solar cell.  相似文献   

16.
CdS quantum dots (QDs) were introduced as an interface modifier in the poly(3-hexylthiophene) (P3HT)/TiO2 nanorod arrays hybrid photovoltaic device. The presence of CdS QDs interlayer was found to provide enhanced light absorption, increased interfacial recombination resistance at the P3HT/TiO2 interfaces, thus leading to a lower recombination rate of the electrons due to the stepwise structure of band edge in P3HT/CdS/TiO2, which accounts for the observed enhanced photocurrent and photovoltage of the hybrid solar cells. The optimized performance was achieved in P3HT/CdS/TiO2 hybrid solar cells after deposition of CdS QDs for 10 cycles, with a power conversion efficiency of 0.57 %, which is nearly ten times higher than that of P3HT/TiO2. The findings indicate that inorganic semiconductor quantum dots provide effective means to improve the performance of polymer/TiO2 hybrid solar cells.  相似文献   

17.
TiO2 (anatase and rutile) nanoparticles with an average crystallite size of 20-40 nm have been prepared at room temperature by polyol-mediated synthesis technique in a semi-aqueous solvent medium using titanium iso-propoxide as the titanium source, acetone as the oil phase and ethylene glycol as the stabilizer. Phase and microstructure of the resultant materials have been characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photocatalytic degradation of acetaldehyde using TiO2 nanoparticles was investigated by gas-chromatography technique.  相似文献   

18.
王庆宝  张仲  徐锡金  吕英波  张芹 《物理学报》2015,64(1):17101-017101
采用基于密度泛函理论(DFT)的平面波超软赝势方法(PWPP), 利用Material studio 计算N, Fe, La三种元素掺杂引起的锐钛矿TiO2晶体结构、能带结构和态密度变化. 并通过溶胶-凝胶法制得锐钛矿型本征TiO2, N, Fe共掺杂TiO2和N, Fe, La共掺杂TiO2; 用X射线衍射和扫描电镜表征结构; 紫外-可见分光光度计检测TiO2对甲基橙的降解效率变化. 计算结果表明, 由于N, Fe, La三掺杂TiO2的晶格体积、键长等发生变化, 导致晶体对称性下降, 光生电子-空穴对有效分离, 同时在导带底和价带顶形成杂质能级, TiO2禁带宽度由1.78 eV变为1.35 eV, 减小25%, 光吸收带边红移, 态密度数增加, 电子跃迁概率提升, 光催化能力增加. 实验结果表明: 离子掺杂使颗粒变小, 粒径大小: 本征TiO2>N/Fe_TiO2>N/Fe/La_TiO2, 并测得N/Fe/La_TiO2发光峰425 nm, 能隙减小, 光催化能力比N/Fe_TiO2强, 增强原因是杂质能级和电子态数量增加引起.  相似文献   

19.
High crystallinity mesoporous TiO2 hollow spheres (MHS-TiO2) were prepared using the mesoporous carbon hollow sphere template. The MHS-TiO2 contains mainly nanostructured anatase. The mesopore of the MHS-TiO2 has a pore opening in the range of 400–600 nm. The refined extended X-ray absorption fine structure spectra indicate that the MHS-TiO2 possesses less the 1st-shell Ti–O coordination numbers than the nano-TiO2. More surface active species (A2 ((Ti=O)O4)) on the MHS-TiO2 are also observed by the component fitted X-ray absorption near edge structure spectroscopy. The MHS-TiO2 photoanode has a better DSSC conversion efficiency than the nano-TiO2 one by at least 40%. Note that the N3 dye molecules are accessible to the mesopores of the MHS-TiO2, and the loading time for N3 can be reduced by at least 70% if compared with those of the nano-TiO2.  相似文献   

20.
Ultrafine nitrogen-doped TiO2 nanoparticles with narrow particle size distribution, good dispersion, and high surface area were synthesized in the presence of urea and PEG-4000 via a hydrothermal procedure. TEM observation, N2 adsorption, XRD, UV-vis spectroscopy, the Raman spectroscopy and XPS analysis were conducted to characterize the synthesized TiO2 particles. The synthesized TiO2 particles were a mixture of 49.5% anatase and 50.5% rutile with a size of around 5 nm. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive Brilliant Blue KN-R under both UV and visible light. The synthesized TiO2 particles showed much higher photocatalytic activity than a commercial P25 TiO2 powder under both UV and visible light irradiations. The high performance is associated to N doping, the reduced particle size, good dispersion, high surface area, and a quantum size effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号