首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
It is argued that the dominant feature of the phase diagram of the high Tc cuprates is the crossover to the pseudogap phase in the energy (temperature) region E(T). We argue that this scale is determined by the effective anti-ferromagnetic interaction which we calculate to be Jeff=Jsuperexchangext where x is the hole percentage and t the hopping integral.  相似文献   

2.
We examine the possible electron-phonon spectra that produce both Tc=39 K and an isotope coefficient β=0.32±0.01, with Eliashberg theory. We assess the viability of the conventional electron-phonon mechanism in light of these results, compared with ab initio calculations of the electron-phonon spectrum. Comparisons are made with similar considerations for low Tc materials.  相似文献   

3.
The effect of non-magnetic Zn impurity on superconductivity in electron-type pnictide superconductor LaFe0.925−yCo0.075ZnyAsO is studied systematically. The optimally doped LaFe0.925Co0.075AsO without Zn impurity exhibits superconductivity at Tcmid of 13.2 K, where Tcmid is defiend as the mid-point in the resistive transition. In the presence of Zn impurity, the superconducting transition temperature, Tcmid, is severely suppressed. The result is consistent with the theoretic prediction on the effect of non-magnetic impurity in the scenario of s± pairing, but it is in sharp contrast to the previous report on the effect of Zn impurity in the F-doped systems. The possible interpretation of the different effects of Zn impurity on superconductivity in different systems is discussed.  相似文献   

4.
The structural and superconducting properties of Bi1.7Pb0.3Sr2Ca2−xYxCu3Oy superconducting samples are investigated by X-ray diffraction (XRD), resistivity and thermoelectric power (TEP) measurements. XRD results reveal that the volume percentage of the 2223 high Tc phase decreases with an increase in Y content. The replacement of the Ca2+ ion by the Y3+ ion does not influence the tetragonal structure of the pure Bi (Pb): 2223 system and the lattice parameters vary with Y content. The results of resistivity indicate that the critical temperatures Tc of the samples decrease monotonically with an increase in Y content. Further, the critical concentration of Y to completely suppress superconductivity in the Y-doped Bi (Pb):2223 system is higher (0.60) than that reported (0.20) for the other rare-earth elements. On the other hand, the values of TEP at room temperature are found to be negative for Y=0.00 and 0.10 samples, and it changed to positive with further increase in Y content. The hole-carrier concentration per Cu ion (P) is deduced by using two different ways: the first in terms of Tc values in the superconducting state and the other in terms of TEP values in the normal state. Interestingly, it is found that the values of P deduced from the formal way are not consistent with the reported parabolic behavior for superconducting systems in the under-doped region, and consequently disagree with the general roles of substitution. However, the vice versa is recorded for the values of P deduced from the latter way. The results are discussed in terms of the possible reasons for the suppression of superconductivity in the considered system.  相似文献   

5.
The well known phenomenon of the increase of Tc of YBCO after slow cooling or low temperature annealing without change of the oxygen content, was found also for the YBCO like tetragonal superconductors of (CaxLa1−x)(LauBa1−u)2Cu3Oy (this compound has been previously denoted as CLBLCO, CLBCO or CaLaBaCuO). It has been observed at 150 and 100 °C for oxygen underdoped, optimally- and overdoped ceramics. The products retain their tetragonal unit cells. The possible reasons of this phenomenon are discussed.  相似文献   

6.
The synthesis of the Ruddlesden-Popper series, LnCa2Mn2O7, (Ln=Pr, Nd, Sm and Gd) is described and their structure and electronic properties investigated. The reduction in size of the A-site cation causes an increase in the distortion of their orthorhombic structures (space group Cmcm). All of these compounds form with a perovskite impurity, the amount of which increases on reduction of the cation size. The synthesis temperature also alters the amount of perovskite impurity in the phase, but only to a lower limit, implying the perovskite phase is intrinsic to the material and that a phase equilibrium exists between the layered Ruddlesden-Popper and perovskite phases, which is controlled by the cation size. The magnetic susceptibility show transitions characteristic of the perovskite phase, therefore little direct information can be obtained about the Ruddlesden-Popper phases, except that ferromagnetism is not observed in any of these materials.  相似文献   

7.
Measurements of the a.c.susceptibility (χ=χ′+iχ″) have been made on the Mg substituted high TC superconducting system, CuBa2(MgxCa1−x)3Cu4O12−y (Cu-1234) with x=0, 0.10 & 0.20, at different values of the a.c.field amplitude. Estimates of the intergranular critical current density(JC) made from the field dependent χ″-T curves show an improvement in the Mg-substituted Cu-1234 system. Results have been analysed in the light of the crystal structure and the superconducting anisotropy factor (γab/ξc) of the Cu-1234 system. Lower superconducting anisotropy emanating from Mg substitution has been found to be significant, resulting in better superconducting properties.  相似文献   

8.
The electronic density of states (DOS) and magnetic moments of rare-earth antimonides (RCrSb3) have been studied by the first principles full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). For the exchange-correlation potential, the LSDA+U method is used. The effective moments of LaCrSb3, CeCrSb3, NdCrSb3, GdCrSb3, and DyCrSb3 were found to be , , , and respectively. The exchange-splittings of Cr-3d state electrons and 4f-states of rare earth elements were analyzed to explain the magnetic nature of these systems. The Cr atom plays a significant role on the magnetic properties due to the hybridization between Cr-3d and Sb-5p state orbitals. The results obtained are compared and found to be in close agreement with the available data.  相似文献   

9.
The thermal diffusivity has been investigated in double perovskite Sr2MMoO6 (M=Fe, Mn and Co) by means of the mirage effect. We have found that the thermal diffusivity of metallic Sr2FeMoO6 is 0.39 cm2/s, which is larger than that (0.33 cm2/s) of insulating Sr2MnMoO6 and Sr2CoMoO6. We further investigate the substitution effects of the La3+ ions for the Sr2+ ions in Sr2FeMoO6 and Sr2MnMoO6, and have found that the thermal diffusivities of both samples significantly increase with the La concentration. Such an enhancement of the thermal diffusivities has been ascribed to occupation of the extra itinerant electrons on the conduction Mo4d band.  相似文献   

10.
Neutron diffraction and magnetic susceptibility studies of the two-dimensional coordination polymer Co(ox)(bpy-d8) are presented, where ox=C2O42− and bpy-d8=4,4′-bipyridine-d8 (fully deuterated). The neutron powder diffraction data reveal a second-order crystallographic phase transition at 290 K. Above 290 K, a disordered structure, space group Immm, is observed that is closely related to the ordered structure previously proposed on the basis of single crystal X-ray diffraction. At low temperatures, the structure is an ordered variant of the high-temperature phase with space group I222. In both phases, the Co ions are linked by the oxalate forming infinite chains that are crosslinked by the bpy ligands.The magnetic susceptibility follows qualitatively a quasi one-dimensional chain behavior. It exhibits a broad maximum around 35 K, corresponding to a strong antiferromagnetic coupling through the oxalate bridges. A kink at 9 K marks the onset of long-range antiferromagnetic ordering due to much weaker interchain magnetic interactions.The magnetically ordered structure determined from the low-temperature neutron diffraction data can be described with the propagation vector (1/2, 1/2, 1/2), i.e. a doubling of the unit cell in each principal direction. It is concluded that a significant antiferromagnetic interaction is mediated through the bpy ligands, although the Co-Co distance along these bridges is 11.4 Å.  相似文献   

11.
Heat capacity study was performed, for the first time, for [MnF4TPP][TCNE]·0.5MeOH and [Mn(OC14H29)4TPP][TCNE]·MeOH complexes in the 1.8-100 K temperature range under the 0-9 T magnetic field and disclosed new aspects inherent in such strongly coupled charge-transfer Mn-porphyrin-TCNE linear chain systems, where TPP=5,10,15,20-tetraphenylporphyrinato, TCNE=tetracyanoethylene and MeOH=methanol. Any heat capacity anomaly due to the onset of the magnetic long-range-order was not detected, whereas the magnetic phase transition has clearly been observed around 20 K by previous magnetic studies. As these materials are well approximated by quasi-one-dimensional ferrimagnetic Heisenberg chains with very large intrachain spin-spin interactions, the most part of the magnetic entropy is retained above the phase transition temperature as the dominant short-range order. This is the reason why no magnetic phase transition was detected by calorimetry. On the other hand, the big effect observed in the magnetic susceptibility is well accounted for if the formation of magnetic domains is assumed in the crystal.  相似文献   

12.
The magnetic properties of the PrPd2Ge2 and NdPd2Ge2 compounds have been investigated by magnetic measurements, specific heat measurements and neutron diffraction experiments. The PrPd2Ge2 compound orders antiferromagnetically below TN=5.0(2) with an original modulated magnetic structure characterized by a magnetic cell three times larger than the chemical one by tripling of the c parameter. The palladium atom is non magnetic and the Pr moments are parallel to the c-axis with a value of ≈2.0 μB at 2 K. The specific heat measurements clearly detect a low temperature transition for the NdPd2Ge2 compound, interpreted as a Nd sublattice antiferromagnetic ordering below 1.3(2) K.  相似文献   

13.
Magnetic susceptibility measurements carried out on (Co,Zn)RE4W3O16 compounds revealed a disordered state of magnetic moments above 4.2 K for all compounds under study, and a weak response to magnetic field and temperature for ZnSm4W3O16 and ZnEu4W3O16 samples. The temperature independent component of magnetic susceptibility has a negative value for ZnGd4W3O16 and a positive one for the rest of the tungstates, indicating a domination of van Vleck contribution. The magnetization isotherms of majority of the tungstates under study revealed both spontaneous magnetic moments and hysteresis characteristic for the superparamagnetic-like behavior with blocking temperature TB∼30 K, except for ZnEu4W3O16. Fitting procedure of the Landé factor revealed that the stronger the orbital contribution, the weaker the superparamagnetic effect, namely for ZnRE4W3O16. In case of CoRE4W3O16 a significant participation of the Co2+ moment in the spontaneous magnetization was observed.  相似文献   

14.
The magnetic properties of four compounds in the series CaBaCo4−xyZnxAlyO7 (x=0,1,2, y=0,1) were investigated. Using AC-susceptibility and DC-magnetometry, magnetic transitions (Tfs) were found for all four compositions in the range 50-3 K. The data from the AC measurements proved to be frequency dependent: Tf increases with higher frequencies. An energy-loss in the magnetic coupling, indicated as contributions in the imaginary part of the magnetic susceptibility (χ″), was seen for every compound and its maximum appeared just below the maximum χ′. Modelling the data with Arrhenius-, Vogel-Fulcher-, and the power-law made it possible to relate the four compounds to spin-glass materials. The Casimir-du Pré relation was used to extract average relaxation times at Tf. The DC magnetisations clearly show differences between field-cooled and zero-field-cooled measurements. None of the compounds exhibit any metamagnetic properties up to 8 T. A new method is presented to calculate the saturation fields using DC data. Relaxation measurements on three compounds indicate that the systems relax very fast, in contrast to spin-glasses. Aging does not affect the fast relaxations. The compounds are interpreted as disordered anti-ferromagnets with spin-glass features.  相似文献   

15.
Bi1−xDyxFeO3 (x=0.0, 0.03, 0.05, 0.07, 0.10 and 0.12) ceramics were synthesized by solid state reaction method. Effects of Dy substitution on structural distortion, magnetic and optical properties of BiFeO3 were examined by X-ray diffraction, Raman and UV–Visible spectroscopy. The samples were found to crystallize in rhombohedral structure of BiFeO3 with R3c space group. The reduction in lattice parameters and unit cell volume indicate the distortion in FeO6 octahedra of the rhombohedral structure without any signature of phase transformation up to x=0.12. The predictable weak ferromagnetic hysteresis loops can be observed in the Dy doped samples with maximum remnant magnetization of 0.2103 emu/g for x=0.12. The weak ferromagnetism is ascribed to the suppressed spiral spin structure and magnetically active characteristic of Dy3+ ions together with ferromagnetic coupling between Dy3+ and Fe3+ ions. With optical band gap in visible region, Dy doped BiFeO3 ceramics are potential material for optoelectronic device and solar cell applications.  相似文献   

16.
Lanthanide tungstates, Ln2W2O9 (Ln=La, Pr, Nd, Sm, and Gd), were prepared via the polymerized complex method at 1273 K for 2 h, and their photocatalytic activities for hydrogen and oxygen evolution were investigated. Pt-loaded Gd2W2O9 exhibited activity for H2 evolution from an aqueous methanol solution under light irradiation (λ>300 nm). The remaining Ln2W2O9 were inactive for H2 evolution due to the influence of the Ln elements and their crystal structures. All Ln2W2O9 were inactive for O2 evolution from an aqueous AgNO3 solution due to the lack of O2 evolution sites on the surface.  相似文献   

17.
The 57Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)6](ClO4)2 has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S=0) and high-spin (S=2) states. Temperature-dependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with TC(↓)=223 and TC(↑)=213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below TC. The present study reveals an increase in high-spin fraction upon heating in the temperature range below TC, and an explanation is provided.  相似文献   

18.
This paper reports on multiferroic properties of Ho substituted BiFeO3 (Bi1−xHoxFeO3) ceramics. It is observed that for x=0.15, a prominent ferroelectric loop is seen at 300 K even if the system remains in rhombohedral (R3c) phase without appearance of any observable impurity phases. A well shaped M-H loop is observed at 10 K for x=0.15. However it showed ferromagnetism, confirming the contribution of Ho3+ towards enhancement of ferromagnetic properties of BiFeO3 at 300 K. Suppression of impurity phases of pure BiFeO3 bulk ceramic favors the reduction of mobile oxygen vacancies and reduces leakage current, due to which ferroelectric properties of BiFeO3 is enhanced. We argue that Ho substitution at Bi site is likely to suppress the spiral spin modulation and at the same time increase the canting angle, which favors enhanced multiferroic properties. XRD, SEM, magnetization, polarization and chemical bonding analysis measurements were carried out to explain the multiferroic behavior.  相似文献   

19.
AC measurements were performed on the thortveitite-like layered compounds, FeRGe2O (R=Pr,Tb) in order to study their dielectric features, e.g. as a function of temperature. The main electrical response lies on impedance plots composed of two successive arcs with depressed centers. Bulk conductivity behavior is mostly Arrhenius for the measured temperatures. The associated bulk activation energies are close to 1 eV. Raw data were used to follow the temperature dependence of the dynamic parameters, ε′(ω) and σ′(ω). From logarithmic σ′(ω) vs. ω curves the dc component was obtained. ε′(ω) vs. log ω curves exhibit a dispersive behavior at low frequencies, reflecting blocking effects. Edc and Eac activation energies were also calculated, the last one obtained from σ′(ω) vs. 1000/T plots. Conductivity results suggest the occurrence of an extrinsic conducting mechanism. A structural instability was detected via the temperature dependence of permittivity, which has been ascribed to the presence of Ga-O-Ga bonds having associated angles different of 180°. Analyses of the results show that the interchange of Tb and Pr in the general formula FeRGe2O7 (R=Pr, Tb) involves only small differences in their global ac and dc behavior.  相似文献   

20.
Thermochemistry in the decomposition of gadolinium di-oxycarbonate, Gd2O2CO3(s) and neodymium di-oxycarbonate, Nd2O2CO3(s) was studied over the temperature region of 774-952 K and 775-1105 K, respectively. The equilibrium properties of the decomposition reactions were obtained by tensimetric measurement of the CO2(g) pressure over the biphasic mixture of RE2O2CO3(s) and RE2O3(s) at different temperatures (RE=Gd, Nd) and also by thermogravimetric analysis of the decomposition temperature at different CO2 pressures. The temperature dependence of the equilibrium pressure of CO2 thus measured could be given by
ln pCO2/Pa (±0.13)=−22599.1/T+35.21 (774≤T (K)≤952) for Gd2O2CO3 decomposition and
ln pCO2/Pa (±0.19)=−23824.7/T+33.14 (775≤T (K)≤1105) for Nd2O2CO3 decomposition.
From the above vapor pressure expressions, the median enthalpy and entropy of the decomposition of the oxycarbonates were calculated by the second law analysis and their thermodynamic stabilities were derived. The results are discussed in the light of available thermochemical data of the compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号