首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an angle-resolved photoemission spectroscopy study of electronic structures of Eu1−xLaxFe2As2 single crystals, in which the spin density wave transition is suppressed with La doping. In the paramagnetic state, the Fermi surface maps are similar for all dopings, with chemical potential shifts corresponding to the extra electrons introduced by the La doping. In the spin density wave state, we identify electronic structure signatures that relate to the spin density wave transition. Bands around M show that the energy of the system is saved by the band shifts towards high energies, and the shifts decrease with increasing doping, in agreement with the weakened magnetic order.  相似文献   

2.
The crystal structure, magnetism properties, and density of states for FeAs layered compound SrFe2As2 have been investigated by using the density functional theory (DFT) method. The magnetism under a checkerboard nearest neighbor anti-ferromagnetic (NN AFM) and ferromagnetic (FM) order ground-state have been analyzed with substitution for Sr with K ion in Sr1−xKxFe2As2. The results indicate that the distortion of FeAs tetrahedrons is sensitive to the electron doping concentration. The system magnetism was suppressed by K doping in NN-AFM ground state instead of FM. The density of states at Fermi level N(EF) under NN AFM ground state would be regarded as a driving force for the increased Tc of Sr1−xKxFe2As2 system as observed experimentally. Our calculation reflects that NN AFM type spin fluctuation may still exist in the Sr1−xKxFe2As2 system and it may be an origin of strong spin fluctuation in this system besides the spin density wave (SDW) states.  相似文献   

3.
Electroresistance (ER) effects were investigated for a full series of manganite ceramics La1−xCaxMnO3 (0<x<1), synthesized by solid state reaction. The results indicate that while the ER effects are large only in the presence of electrically active, high E-field boundaries, the equilibrium or metastable electronic-magnetic states in the adjoining domains are also significant, as a large ER occurs only at x=0.51 and x=0.17; those compositions are both near a two-phase coexistence region, i.e. close to a compositional regime where equilibrium insulating/metallic phase domains and interfaces would occur spontaneously.  相似文献   

4.
A series of the SmFeAsO1−xFx and GdFeAsO1−xFx (x=0.05, 0.1, 0.15, 0.2, 0.25) samples have been prepared using nano-scaled ReF3 as the fluorine resource at a relatively low temperature. The samples have been sintered at 1100 and 1120 °C for SmFeAsO1−xFx and GdFeAsO1−xFx, respectively. These temperatures are at least 50-60° lower than other previous reports. All of the so-prepared samples possess a tetragonal ZrCuSiAs-type structure. Dramatically supression of the lattice parameters and increase in Tc proved that this low temperature process was more effective to introduce fluorine into REFeAsO. Superconducting transition appeared at 39.5 K for SmFeAsO1−xFx with x=0.05 and at 22 K for GdFeAsO1−xFx with x=0.1. The highest Tc was detected to be 54 K in SmFeAsO0.8F0.2 and 40.2 K in GdFeAsO0.75F0.25. The use of the nano-scaled ReF3 compounds has improved the efficiency of the present low temperature method in synthesizing the fluorine-doped iron-based superconductors.  相似文献   

5.
The magnetic properties of four compounds in the series CaBaCo4−xyZnxAlyO7 (x=0,1,2, y=0,1) were investigated. Using AC-susceptibility and DC-magnetometry, magnetic transitions (Tfs) were found for all four compositions in the range 50-3 K. The data from the AC measurements proved to be frequency dependent: Tf increases with higher frequencies. An energy-loss in the magnetic coupling, indicated as contributions in the imaginary part of the magnetic susceptibility (χ″), was seen for every compound and its maximum appeared just below the maximum χ′. Modelling the data with Arrhenius-, Vogel-Fulcher-, and the power-law made it possible to relate the four compounds to spin-glass materials. The Casimir-du Pré relation was used to extract average relaxation times at Tf. The DC magnetisations clearly show differences between field-cooled and zero-field-cooled measurements. None of the compounds exhibit any metamagnetic properties up to 8 T. A new method is presented to calculate the saturation fields using DC data. Relaxation measurements on three compounds indicate that the systems relax very fast, in contrast to spin-glasses. Aging does not affect the fast relaxations. The compounds are interpreted as disordered anti-ferromagnets with spin-glass features.  相似文献   

6.
Solid solutions of vanadates of formula BixLn1−xVO4 (Ln=Y, Gd) doped with Eu3+ or Sm3+ ions have been synthesized by solid-state reactions. Intense red/orange-red luminescence is obtained in these samples on excitation in the broad charge-transfer band in the near UV. The excitation in the Eu3+ levels leads to much less intense red emission. These materials could find applications as red phosphors for solid-state white lighting devices utilizing GaN-based excitation in the near UV.  相似文献   

7.
Studies on La0.7Sr0.3Co1−xMnxO3 (x=0-0.5) compounds evidence that the interaction between Mn and Co ions in this system is antiferromagnetic super-exchange and not ferromagnetic (FM) double-exchange (DE). As a result, antiferromagnetism and magnetic glassiness develop steadily with increasing Mn content and the system becomes a spin glass at x∼0.1. Analyses of high-field magnetization data indicate that the system consists of two major phases: a metallic FM phase which magnetically saturates in rather low field, and an insulating non-FM phase which has a linear dependence of magnetization on magnetic field. In the low doping regime, the fraction of the non-FM component expands with temperature at the expense of the FM phase and becomes maximal at TC. Ferromagnetism reappears in highly doped (x≥0.2) compounds due to the presence of DE interaction between the Mn ions. The small volume fraction of the FM phase derived from the M(H) data in high-field region supports the coexistence of insulating and FM behaviors in the highly doped samples.  相似文献   

8.
We report 75As nuclear quadrupole resonance (NQR) studies on oxypnictide superconductors LaFeAsO1−xFx (x=0.08, 0.15) and LaNiAsO1−xFx (x=0, 0.06, 0.10, 0.12). In LaFeAsO0.92F0.08 (Tc=23 K), nuclear spin-lattice relaxation rate 1/T1 shows no coherence peak just below Tc and decreases with decreasing temperature accompanied by a hump structure at T∼0.4Tc, which is a characteristic of the multigap superconductivity. In the normal state, the quantity 1/T1T increases with decreasing temperature to Tc, indicating that the existence of antiferromagnetic correlation originating from its multiple electronic band structure. On the other hand, LaNiAsO1−xFx shows a clear Hebel-Slichter (coherence) peak just below Tc, evidencing that the LaNiAsO1−xFx is a BCS superconductor. In the normal state, 1/T1T is constant in the temperature range for all LaNiAsO1−xFx, which indicates electron correlations are weak. We suggest that the contrasting behavior of both superconductivity and electron correlations in LaFeAsO0.92F0.08 and LaNiAsO1−xFx between them relate to the difference of electronic band structure configuration. We also provide a possible interpretation for the pseudogap-like behavior in the normal state observed in both compounds.  相似文献   

9.
Lanthanum based mixed valence manganite system La1−xCax−0.08Sr0.04Ba0.04MnO3 (LCSBMO; x=0.15, 0.24 and 0.33) synthesized through the sol-gel route is systematically investigated in this paper. The electronic transport and magnetic susceptibility properties are analyzed and compared, apart from the study of unit cell structure, microstructure and composition. Second order phase transition is observed in all the samples and significant difference is observed between the insulator to metal transition temperature (TMI) and paramagnetic (PM) to ferromagnetic (FM) transition temperature (TC). In contrast to the insulating FM behaviour usually observed in La1−xCaxMnO3 (LCMO) for x=0.15, a clear insulator to metal transition is observed for LCSBMO for the same percentage of lanthanum. The temperature dependent resistivity of polycrystalline pellets, when obeying the well studied law ρ=ρo+ρ2T2 for T<TMI, is observed to differ significantly in the values of ρo and ρ2, with the electrical conductivity increasing with x. The variable range hopping model has been found to fit resistivity data better than the small polaron model for T>TMI. AC magnetic susceptibility study of the polycrystalline powders of the manganite system shows the highest PM to FM transition of 285 K for x=0.33.  相似文献   

10.
The conducting oxides solid solutions of Cd1+xIn2−2xSnxO4 (x=0.1, 0.3, 0.5, 0.7, 1.0) were prepared via a solid state reaction method. The band gaps were estimated to be 2.4 eV for x=1.0, 2.5 eV for x=0.7, 2.6 eV for x=0.5, 2.7 eV for x=0.3 and 2.8 eV for x=0.1. Oxygen could be evolved over Cd2SnO4 under the irradiation of Xe-lamp or even visible light (λ>420 nm), while the others could only work in the UV-light range. Raman showed the cation distribution in Cd2SnO4 is ordered, while that in the others is disordered. The cations distribution was proposed to be the cause of the difference in photocatalytic O2-evolution activities.  相似文献   

11.
The synthesis of the Ruddlesden-Popper series, LnCa2Mn2O7, (Ln=Pr, Nd, Sm and Gd) is described and their structure and electronic properties investigated. The reduction in size of the A-site cation causes an increase in the distortion of their orthorhombic structures (space group Cmcm). All of these compounds form with a perovskite impurity, the amount of which increases on reduction of the cation size. The synthesis temperature also alters the amount of perovskite impurity in the phase, but only to a lower limit, implying the perovskite phase is intrinsic to the material and that a phase equilibrium exists between the layered Ruddlesden-Popper and perovskite phases, which is controlled by the cation size. The magnetic susceptibility show transitions characteristic of the perovskite phase, therefore little direct information can be obtained about the Ruddlesden-Popper phases, except that ferromagnetism is not observed in any of these materials.  相似文献   

12.
We experimentally investigate the role of geometry on the current and current density dependencies of the intrinsic electroresistance of Sm1−xSrxMnO3 of two compositions (x=0.40 and x=0.45). It is found that for each composition, the plot of the intrinsic electroresistance versus current density for samples with different dimensions and resistances coincide whereas this does not happen in the case of the electroresistance versus the magnitude of the current. These results confirm that the current density is indeed the relevant “universal” parameter for controlling the intrinsic electroresistance of these manganites.  相似文献   

13.
This paper presents a study of bulk samples synthesized of the Ag1−xCuxInSe2 semiconductor system. Structural, thermal and electrical properties, as a function of the nominal composition (Cu content) x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 were studied. The influence of x on parameters such as melting temperature, solid phase transition temperature, lattice parameters, bond lengths, crystallite size t (coherent domain), electrical resistivity, electrical mobility and majority carrier concentration was analyzed. The electrical parameters are analyzed at room temperature. In general, it is observed that the properties of the Ag1−xCuxInSe2 system for x≤0.4 are dominated by n-AgInSe2, while for x>0.4, these are in the domain of p-CuInSe2. The crystallite size t in the whole composition range (x) is of the order of the nanoparticles. Secondary phases (CuSe, Ag2Se and InSe) in small proportion were identified by XRD and DTA.  相似文献   

14.
We report a resonant inelastic X-ray scattering (RIXS) study on perovskite manganese oxides La1−xSrxMnO3 (x=0, 0.2, and 0.4) at Mn K-absorption edge. Hole-doping effect on the electronic excitations in the strongly correlated electron systems is elucidated by comparing with undoped LaMnO3. The scattering spectra of metallic La0.6Sr0.4MnO3 show that a salient peak appears in low energies indicating the persistence of the Mott gap. At the same time, the energy gap is partly filled by doping holes and the spectral weight shifts toward lower energies. Though the peak position of the excitations shows weak dispersion in momentum dependence, RIXS intensity changes as a function of the scattering angle (2θ), which is related to the anisotropy. Furthermore, anisotropic temperature dependence is observed in La0.8Sr0.2MnO3 which shows a metal-insulator transition associated with a ferromagnetic transition. We consider that the anisotropy in the RIXS spectra is possibly attributed to the correlation of the orbital degrees of freedom. The anisotropy is large in LaMnO3 with long-range orbital order, while it is small but finite in hole-doped La1−xSrxMnO3 which indicates persistence of short-range orbital correlation.  相似文献   

15.
We studied the doping dependence of the superconducting gap in La2−xSrxCuO4 (LSCO) by means of Andreev reflection measurements in Au/LSCO point-contact junctions. The Andreev reflection features were found to disappear at TcA close to the bulk Tc. The fit of the conductance curves with the BTK-Tanaka-Kashiwaya model gives good results if a (s+d)-wave gap symmetry is used. The low-temperature dominant isotropic gap component Δs follows very well the Tc vs. x curve, while the gap-like features observed by angle-resolved photoemission spectroscopy and tunneling scale with T. This confirms the different origin of these two energy scales at T<Tc.  相似文献   

16.
Electron paramagnetic resonance (EPR) investigations has been carried out on the new family of molybdenum doped vanadium sesquioxides (V1−xMox)2−δO3. The oxidation effects were monitored from the rate of paramagnetic V4+ created when the sample is exposed to the air. The effects of the oxidation time, sample temperature, and annealing at 1000 °C under a diluted hydrogen atmosphere on the EPR signal features are analyzed. The V4+ concentration in the oxidized samples is determined and the relaxation effects driven by the conduction electrons are pointed out from the thermal behaviour of the EPR line features. EPR spectra of all the oxidized samples also reveal a small ferromagnetic contribution strongly correlated with the V4+ content.  相似文献   

17.
A normal thiospinel CuIr2S4 exhibits a temperature-induced metal-insulator (M-I) transition around 230 K with structural transformation, showing hysteresis on heating and cooling. On the other hand, CuCr2S4 has the same normal spinel structure without the structural transformation. CuCr2S4 has been found to be metallic and ferromagnetic with the Curie temperature Tc~377 K. In order to see the effect of substituting Cr for Ir on the M-I transition, we have carried out a systematic experimental study of electrical and magnetic properties of Cu(Ir1−xCrx)2S4. The M-I transition temperature shifts to lower temperature with increasing Cr-concentration x and this transition is not detected above x~0.05. The ferromagnetic transition temperature decreases as x is decreased and the transition does not occur below x~0.20.  相似文献   

18.
We report the detailed results of magnetization and magnetoresistance measurements in the Ru doped layered manganite system La1.2Sr1.8Mn2−xRuxO7 (x=0, 0.1, 0.5, 1.0). High-resolution measurements of magnetization and magnetoresistance were carried out as functions of temperature, magnetic field and time. We find evidence for the existence of competing ferromagnetic and antiferromagnetic interactions resulting in the formation of a frustrated spin-glass-like state at low temperatures. The time dependent magnetization follows the relation very well. We find that Ru doping enhances the coercive field and drives the system towards a magnetically mixed phase at low temperatures. Large negative magnetoresistance values are observed in all samples and at low temperatures the magnetoresistance varies as the square root of the applied magnetic field.  相似文献   

19.
Layered SrBi2(Nb1−xVx)2O9−δ (SBVN) ceramics with x lying in the range 0-0.3 (30 mol%) were fabricated by the conventional sintering technique. The microstructural studies confirmed the truncating effect of V2O5 on the abnormal platy growth of SBN grains. The electrical conductivity studies were centred in the 573-823 K as the Curie temperature lies in this range. The concentration of mobile charge carriers (n), the diffusion constant (D0) and the mean free path (a) were calculated by using Rice and Roth formalism. The conductivity parameters such as ion-hopping rate (ωp) and the charge carrier concentration (K′) term have been calculated using Almond and West formalism. The aforementioned microscopic parameters were found to be V2O5 content dependent on SrBi2(Nb1−xVx)2O9−δ ceramics.  相似文献   

20.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Sr0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show a rhombohedral structure with the space group . It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase of Te content. The Curie temperature TC decreases with increasing Te-doping level, in contrast, the magnetization magnitude of Te-doping samples at low temperatures increase with increasing x as x≤0.05 and then decrease with further increasing x to 0.15. The results are discussed in terms of the combined effects of the opening of the new double exchange (DE) channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ for Sr2+ and the reduction of the transfer integral b due to the decrease of the Mn-O-Mn bond angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号