首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ytterbium tri-fluoromethanesulfonate (YbTFMS) single crystals are prepared from the slow evaporation of the aqueous solution of YbTFMS and the principal magnetic susceptibility perpendicular to the c-axis of the hexagonal crystal (χ) is measured from 300 K down to 13 K. Principal magnetic anisotropy Δχ(=χχ) is measured from 300 K down to 80 K which provides principal magnetic susceptibility parallel to the c-axis (χ) down to 80 K. Very good theoretical simulation of the observed magnetic properties of YbTFMS has been obtained using one electron crystal field (CF) analysis having C3h site symmetry. No signature of ordering effect in the observed magnetic data is noticed down to the lowest temperature (13 K) attained, indicating the inter-ionic interaction to be of predominantly dipolar type. The calculated g-values are found to be g=2.67 and g=2.51, respectively. CF analysis provides the electronic specific heat which gives two Schottky anomalies in its thermal variation down to ∼13 K. The temperature dependences of quadrupole splitting and hyperfine heat capacity are studied from the necessary information obtained from the CF analysis.  相似文献   

2.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

3.
Magnetic and EPR data have been collected for complex [Cu(L-Arg)2](NO3)2·3H2O (Arg=arginine). Magnetic susceptibility χ in the temperature range 2-160 K, and a magnetization isotherm at T=2.29(1) K with magnetic fields between 0 and 9 T were measured. The observed variation of χT with T indicates predominant antiferromagnetic interactions between Cu(II) ions coupled in 1D chains along the b axis. Fitting a molecular field model to the susceptibility data allows to evaluate g=2.10(1) for the average g-factor and J=−0.42(6) cm−1 for the nearest neighbor exchange coupling (defined as Hex=-∑JijSi·Sj). This coupling is assigned to syn-anti equatorial-apical carboxylate bridges connecting Cu(II) ion neighbors at 5.682 Å, with a total bond length of 6.989 Å and is consistent with the magnetization isotherm results. It is discussed and compared with couplings observed in other compounds with similar exchange bridges. EPR spectra at 9.77 were obtained in powder samples and at 9.77 and at 34.1 GHz in the three orthogonal planes of single crystals. At both microwave frequencies, and for all magnetic field orientations a single signal arising from the collapse due to exchange interaction of resonances corresponding to two rotated Cu(II) sites is observed. From the EPR results the molecular g-tensors corresponding to the two copper sites in the unit cell were evaluated, allowing an estimated lower limit |J |>0.1 cm−1 for the exchange interaction between Cu(II) neighbors, consistent with the magnetic measurements. The observed angular variation of the line width is attributed to dipolar coupling between Cu(II) ions in the lattice.  相似文献   

4.
The nanostructured powder prepared by critical CO2 extraction of the urea-assisted wet chromia gel mixture at 373 K in vacuum was studied by X-ray diffraction techniques. Thermoanalytical methods showed the presence of the lattice water molecules in the resulting phase corresponding to a chemical formula CrOOH·2H2O. The CrOOH·2H2O nanocrystals of 3-5 nm in diameter were observed in transmission electron microscopy and their structure was derived from the Rietveld analysis in which the disorder contribution to the X-ray scattering was implemented. The structural model shows that the hexagonal unit cell of α-CrOOH undergoes monoclinic distortion with half of the O−2 anions and OH groups being replaced by bonded water molecules in the three-dimensional packing resulting in half of the sites in regular Cr+3 octahedra being vacant. Further examination of the quasi-crystalline disordered state of the CrOOH·2(H2O) nanocrystals was performed by model independent method of Radial Distribution Function (RDF). This complementary technique is sensitive to the molecular composition and allows to assess the average atomic (or electron) density distribution and the spacings of the atomic arrangements in the nearest neighbor shells comprising the range of the crystalline order in the structure of this material.  相似文献   

5.
EPR spectroscopic investigations on single crystals of diaquabis[malonato(1-)-κ2O,O′] zinc(II) doped with VO(II) ion have been carried out at X-band frequencies and at 300 K. The single crystal, rotated along the three mutually orthogonally axes, has yielded spin-Hamiltonian parameters g and A as: gxx=1.980, gyy=1.972, gzz=1.937 and Axx=8.4, Ayy=6.1, Azz=18.1 mT, respectively. These spin-Hamiltonian parameters reflect a slight deviation from axial symmetry to rhombic, which is elucidated by the interstitial occupation of vanadyl ions. The isofrequency plots and powder EPR spectrum have been simulated. The percentage of metal-oxygen bond has been estimated. The optical absorption spectrum exhibits four bands at 257, 592, 720 and 764 nm suggesting a C4v symmetry. The admixture coefficients and bonding parameters have also been calculated by collaborating EPR data with optical data.  相似文献   

6.
The chromium(II) antimony(III) sulphide, [Cr((NH2CH2CH2)3N)]Sb4S7, was synthesised under solvothermal conditions from the reaction of Sb2S3, Cr and S dissolved in tris(2-aminoethyl)amine (tren) at 438 K. The products were characterised by single-crystal X-ray diffraction, elemental analysis, SQUID magnetometry and diffuse reflectance spectroscopy. The compound crystallises in the monoclinic space group P21/n with a=7.9756(7), b=10.5191(9), c=25.880(2) Å and β=90.864(5)°. Alternating SbS33− trigonal pyramids and Sb3S63− semi-cubes generate Sb4S72− chains which are directly bonded to Cr(tren)2+ pendant units. The effective magnetic moment of 4.94(6)μB shows a negligible orbital contribution, in agreement with expectations for Cr(II):d4 in a 5A ground state. The measured band gap of 2.14(3) eV is consistent with a correlation between optical band gap and framework density that is established from analysis of a wide range of antimony sulphides.  相似文献   

7.
A series of red phosphors R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) have been synthesized by sol-gel method. The crystallization processes of the phosphor precursors were characterized by X-ray diffraction (XRD) and thermogravimetry-differential thermal analysis (TG-DTA), and the properties of these resulting phosphors have also been characterized by photoluminescence (PL) spectra and reflectance spectra. Field emission scanning electron microscopy (FE-SEM) was also used to characterize the shape and the size of the samples. The results of TG-DTA and XRD indicated that all of the R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) phosphors crystallized completely at 650 °C. Y0.8Eu1.2(MoO4)3 and Gd0.8Eu1.2(MoO4)3 have two structures, monoclinic and orthorhombic, while La0.8Eu1.2(MoO4)3 only adopts monoclinic structure. The luminescent properties of phosphors R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) are dependent on their structures to some extent. The orthorhombic Y0.8Eu1.2(MoO4)3 and Gd0.8Eu1.2(MoO4)3 phosphors show very similar luminescent properties, which differ from those of phosphors with monoclinic structure. For all of R0.8Eu1.2(MoO4)3 (R=La, Y, and Gd) phosphors, intense red emission is obtained by exciting at ∼394 and ∼465 nm which are owing to the sharp 7F05L6 and 7F05D2 lines of Eu3+. Two strongest lines at 394 and 465 nm in excitation spectra of these phosphors match well with the two popular emissions from near-UV and blue GaN-based LEDs, so they could be used as red components for white light-emitting diodes.  相似文献   

8.
In this paper, seven kinds of silane coupling reagents were employed as silicate sources to prepare CaSiO3:Eu3+ phosphors by the sol-gel method. The different silicate precursors were used to adjust the microstructure and size of the resulting phosphors. The crystallite size of phosphors is in the range of 30-35 nm and some of them show regular microstructure after high-temperature thermolysis. The photoluminescence properties show that all of them exhibit the characteristic fluorescence 5D07FJ (J=0, 1, 2, 3, 4) of the Eu3+ ion and the strongest one is the red emission at 610 nm. Furthermore, the emission quantum efficiency (η) of the 5D0 Eu3+ excited state has been calculated to be around 33% from the emission spectrum and the lifetime of the Eu3+ first excited level (τ, 5D0).  相似文献   

9.
Ni3–xCr2x/3(PO4)2 (x=0 and 0.02) microcrystalline powders were obtained as single phases via a modified sol–gel Pechini-type in situ polymerizable complex method. The samples were characterized using scanning electron microscopy, X-ray diffraction, cathodoluminescence (CL), and thermoluminescence (TL) techniques. We found that Cr3+ doping modified the average particle and distribution. The mean particle size was 0.441 μm for Ni3(PO4)2 and 0.267 μm for Ni2.98Cr0.013(PO4)2. The results also reveal that Cr3+ doping notably enhanced the CL and TL UV-blue emission.  相似文献   

10.
Chemical preparation and crystal structure are given for a new cyclotetraphosphate: [3,5-(CH3)2C6H3NH3]4P4O12·3H2O. This compound is triclinic P with the following unit-cell parameters: a=8.298(3), b=8.299(3), c=17.242(7)Å, α=97.13(3), β=102.72(3), γ=64.55(3)°, Z=1 and V=1045.2(8)Å3. The crystal structure has been solved and refined to R=0.040 using 6086 independent reflections. The atomic arrangement can be described as layers organization. Layers built by P4O12 ring anions, ammonium groups and water molecules parallel to the plan (001), between which the organic groups are located. Characterization by X-ray diffraction, IR absorption, and thermal analysis are described.  相似文献   

11.
Cr(III)-doped Cd(HPO4)Cl·[H3N(CH2)6NH3]0.5, a new-layered cadmium phosphate, is synthesized in acidic condition at room temperature. EPR and optical studies are carried out at room temperature. Polycrystalline EPR spectrum reveals the presence of two sites of Cr(III) ions in this layered phosphate lattice with zero-field splitting values of 24.24 and 7.65 mT, indicating that Cr(III) ions are in distorted octahedral sites. The optical absorption spectrum of the sample indicates near octahedral symmetry for the dopant ions. Crystal field, inter-electronic and bonding parameters are evaluated by collaborating EPR and optical data. The evaluated parameters suggest the mode of entry of Cr(III) ion into the layered phosphate as interstitial site, and bonding between the metal and ligand is partially covalent.  相似文献   

12.
Using the 2,5-bis(2-pyridyl)-1,3,4-thiadiazole (bptd), we recently prepared [Cu2(bptd) (H2O) Cl4] and [Ni2(bptd)2 (H2O)4] Cl4, 3H2O in which the magnetic centres are connected through one diazine+one chloro and two diazine ligand bridges, respectively. These two compounds are the first examples that show null intramolecular magnetic interactions despite M-M distances close to 3.7 Å within perfectly planar edifices:Down to , [Cu2(bptd)Cl4(H2O)] is paramagnetic while, below Tt, half of the Cu2+ions interact, leading to residual paramagnetism of one Cu2+/f.u. Magnetic susceptibility measurements, EPR and pulsed EPR study indicate the original intermolecular nature of AF exchanges.[Ni2(bptd)2(H2O)4]Cl4·3H2O susceptibility obeys a Curie-law involving pure paramagnetism. Moreover, its EPR spectrum can be interpreted on the basis of virtual S=1 monomers. Below 70 K, Zero Field Splitting (D∼275 G) due to dipolar interactions without magnetic exchanges could be responsible for the LT spectra splitting. For both compounds, the thia role is suggested as partially responsible for the null-in-plane magnetic exchanges.  相似文献   

13.
A mesoporous S,I-codoped TiO2 photocatalyst with high visible light photocatalytic activity was synthesized through the hydrolysis and condensation of titanium isopropoxide with thiourea and iodic acid as the precursors. The as-prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-vis diffuse reflectance (DRS), X-ray photoelectron spectroscopy (XPS), Fourier translation infrared spectroscopy (FT-IR), and N2 adsorption. The results showed that the cations of S6+ and I5+ could substitute for some of the lattice titanium (Ti4+). The S,I-codoping forms the new bands above the valence band and narrows the band-gap of the TiO2, then shifts the absorption edge from UV light region to visible light range. The activity of the catalyst was examined by photodegradation of methylene blue in an aqueous solution under visible light irradiation. The activity of the S,I-codoped catalyst is far superior to that of single S or I-doped TiO2 counterpart. The high visible light photocatalytic activity could be attributed to the strong absorption of light, well-crystalline anatase phase, and mesoporous microstructure.  相似文献   

14.
Electrochemical lithium insertion into (PO2)4(WO3)2m, where m=9 and 10, has allowed the determination of several phases Lix(PO2)4(WO3)2m between 3.4 and 0.01 V vs Li+/Li0. After the first cycle the electrochemical system was unable to maintain the high specific capacity of the cells (540 Ah/kg) due to irreversible processes. Nevertheless at high voltage values, above 1.4 V vs Li+/Li0, the lithium insertion proceeded through a reversible mechanism. By means of X-ray diffraction experiments we have detected the nature of different phases Lix(PO2)4(WO3)2m formed and we have established a correlation with the reversible/irreversible processes detected during the electrochemical insertion.  相似文献   

15.
A mixed oxide consisting of TiO2 as the major phase and CeO2−y (0<y<0.5) as the dopant phase was prepared via the sol-gel reaction of Ti(i-OC3H7)3 in an aqueous solution of Ce(NO3)3. The resulting oxide powders with different CeO2−y contents were all composed of nano-sized spheres. The CeO2−y phase was identified to have retarding effect on the phase transition from anatase TiO2 to rutile TiO2 at calcinations temperature as high as 800 °C, which would otherwise be a thorough conversion. The CeO2−y-TiO2 powders could apparently shift the UV-absorption band of TiO2 toward visible range, and there was an optimal CeO2−y content in association with the maximum absorbance. This effect is interpreted as the existence of an n-type impurity band, due to the substitution of Ti4+ for Ce3+/4+ at the interface between the two oxides, in the gap of TiO2. According to X-ray photoelectron spectroscopy (XPS) investigation, the Ti element mainly existed as the chemical state of Ti4+ and the Ce oxide doping did not affect the peak position of Ti 2p. The Ce 3d spectrum of CeO2−y-doped TiO2 sample basically denotes a mixture of Ce3+/4+ oxidation states giving rise to a myriad of peaks.  相似文献   

16.
The ground state of the solid solution of the two spin gap systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3 has been investigated by 1H NMR. The existence of a magnetic ordering in the sample with the Cl-content x=0.85 was clearly demonstrated by a drastic splitting in a resonance line at low temperatures below TN=13.5 K. The observed NMR spectra in the ordered state was qualitatively consistent with the simple antiferromagnetic state.  相似文献   

17.
A facile and energy saving sol-gel combustion method has been used to prepare La2Zr2O7 nanocrystallines. The pyrochlore La2Zr2O7 nanocrystals have been obtained at a relatively low temperature with the grain size ranging from 45 to 70 nm. Eu3+ and Dy3+ have been introduced into the La2Zr2O7 crystal structure, respectively, and the intense photoluminescence was observed. The relative intensity of electric dipole transition and magnetic dipole transition is considered for luminescence emission both of Eu3+ and Dy3+. The dependence of luminescence intensity on dopant concentration and the effect of Dy3+ co-doping on Eu3+ luminescence are also discussed.  相似文献   

18.
Nanometer Bi2WO6 catalyst with visible-light responsive was prepared by a sol-gel method in the presence of EDTA. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectrum, Fourier transform infrared (FTIR) spectrum, Brunauer-Emmet-Teller (BET). The UV-vis diffuse reflectance spectrum of the as-prepared sample shows a markedly blue-shift as compared to that of the sample obtained by a solid-state reaction. The as-prepared samples exhibited higher activities than that synthesized by the solid-state reaction for 4BS photodegradation under visible-light irradiation (λ>400 nm) and the sample prepared at 450 °C exhibited the highest photocatalytic activity.  相似文献   

19.
Porous flowerlike CeO2 microspheres were synthesized via a novel hydrothermal method and were used as supports for the oxidation of CO. After loaded with Au or CuO, it exhibited an excellent low-temperature catalytic activity toward CO oxidation reaction. Especially, for the Au-loaded flowerlike CeO2 microsphere catalyst, CO gas started its conversion into CO2 above 80% at room temperature. The possible reasons for the superior catalytic activity of flowerlike CeO2 microsphere catalysts were discussed.  相似文献   

20.
Rare earth doped NaLa(WO4)2 nanoparticles have been prepared by a simply hydrothermal synthesis procedure. The X-ray diffraction (XRD) pattern shows that the Eu3+-doped NaLa(WO4)2 nanoparticles with an average size of 10-30 nm can be obtained via hydrothermal treatment for different time at 180 °C. The luminescence intensity of Eu3+-doped NaLa(WO4)2 nanoparticles depended on the size of the nanoparticles. The bright upconversion luminescence of the 2 mol% Er3+ and 20 mol% Yb3+ codoped NaLa(WO4)2 nanoparticles under 980 nm excitation could also be observed. The Yb3+-Er3+ codoped NaLa(WO4)2 nanoparticles prepared by the hydrothermal treatment at 180 °C and then heated at 600 °C shows a 20 times stronger upconversion luminescence than those prepared by hydrothermal treatment at 180 °C or by hydrothermal treatment at 180 °C and then heated at 400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号