首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α-Fe2O3-In2O3 mixed oxide nanoparticles system has been synthesized by hydrothermal supercritical and postannealing route, starting with (1−x)Fe(NO3)3·9H2xIn(NO3)3·5H2O aqueous solution (x=0-1). X-ray diffraction and Mössbauer spectroscopy have been used to study the phase structure and substitutions in the nanosized samples. The concentration regions for the existence of the solid solutions in the α-Fe2O3-In2O3 nanoparticle system together with the solubility limits of In3+ ions in the hematite lattice and of Fe3+ ions in the cubic In2O3 structure have been evidenced. In general, the substitution level is considerably lower than the nominal concentration x. A justification of the processes leading to the formation of iron and indium phases in the investigated supercritical hydrothermal system has been given.  相似文献   

2.
Middle infrared absorption, Raman scattering and proton magnetic resonance relaxation measurements were performed for [Zn(NH3)4](BF4) in order to establish relationship between the observed phase transitions and reorientational motions of the NH3 ligands and BF4 anions. The temperature dependence of spin-lattice relaxation time (T1(1H)) and of the full width at half maximum (FWHM) of the bands connected with ρr(NH3), ν2(BF4) and ν4(BF4) modes in the infrared and in the Raman spectra have shown that in the high temperature phase of [Zn(NH3)4](BF4)2 all molecular groups perform the following stochastic reorientational motions: fast (τR≈10−12 s) 120° flips of NH3 ligands about three-fold axis, fast isotropic reorientation of BF4 anions and slow (τR≈10−4 s) isotropic reorientation (“tumbling”) of the whole [Zn(NH3)4]2+ cation. Mean values of the activation energies for uniaxial reorientation of NH3 and isotropic reorientation of BF4 at phases I and II are ca. 3 kJ mol−1 and ca. 5 kJ mol−1, respectively. At phases III and IV the activation energies values for uniaxial reorientation of both NH3 and of BF4 equal to ca. 7 kJ mol−1. Nearly the same values of the activation energies, as well as of the reorientational correlation times, at phases III and IV well explain existence of the coupling between reorientational motions of NH3 and BF4. Splitting some of the infrared bands at TC2=117 K suggests reducing of crystal symmetry at this phase transition. Sudden narrowing of the bands connected with ν2(BF4), ν4(BF4) and ρr(NH3) modes at TC3=101 K implies slowing down (τR?10−10 s) of the fast uniaxial reorientational motions of the BF4 anions and NH3 ligands at this phase transition.  相似文献   

3.
Raman spectra of NH4NO3, and ND4NO3, were studied from 250 to 420K. The results show that there are four phases separated by first order transitions. No evidence of the previously reported phase II' was observed.The present results combined with the results of other experiments present the following picture of the state of order of the molecules.In phase I, the highest temperature phase, the NH4+ groups are in a free rotation and the nitrate groups are likely in random reorientation among 12-equivalent positions. In phase II, the NH4+ groups are likely in rapid random reorientation under the local force field of S4 symmetry. The nitrate groups are in hindered rotation but are disordered with one of the O-N bonds directed in one sense or the other along the c-axis. In phase III, the absence of the librational mode indicates that the NH4+ groups are in nearly free rotation but the rotational motion is restricted by the local force field of C3 symmetry. The nitrate groups are probably ordered as suggested by the well polarized character of the modes associated with the nitrate groups. In phase IV, the nitrate groups are ordered with their molecular planes perpendicular to the b-axis. The NH4+ groups are in orientational disorder but may undergo bindered rotations. An optical mode was observed to couple to an anomalous mode which is believed to be a zone edge acoustical mode.  相似文献   

4.
Ternary thin films of cerium titanium zirconium mixed oxide were prepared by the sol-gel process and deposited by a spin coating technique at different spin speeds (1000-4000 rpm). Ceric ammonium nitrate, Ce(NO3)6(NH4)2, titanium butoxide, Ti[O(CH2)3CH3]4, and zirconium propoxide, Zr(OCH2CH2CH3)4, were used as starting materials. Differential calorimetric analysis (DSC) and thermogravimetric analysis (TGA) were carried out on the CeO2-TiO2-ZrO2 gel to study the decomposition and phase transition of the gel. For molecular, structural, elemental, and morphological characterization of the films, Fourier Transform Infrared (FTIR) spectral analysis, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), cross-sectional scanning electron microscopy (SEM), and atomic force microscopy (AFM) were carried out. All the ternary oxide thin films were amorphous. The optical constants (refractive index, extinction coefficient, band gap) and thickness of the films were determined in the 350-1000 nm wavelength range by using an nkd spectrophotometer. The refractive index, extinction coefficient, and thickness of the films were changed by varying the spin speed. The oscillator and dispersion energies were obtained using the Wemple-DiDomenico dispersion relationship. The optical band gap is independent of the spin speed and has a value of about Eg≈2.82±0.04 eV for indirect transition.  相似文献   

5.
Eu3+-doped La2O3 nanocrystalline powder was prepared by polymer complex solution method and further used for preparation of Eu3+-doped La(OH)3. Structural and optical characterization was carried out by powder X-ray diffraction and photoluminescent spectroscopy. XRD measurements confirmed the formation of hexagonal La2O3 and its recrystallization into La(OH)3 in a humid atmosphere. Excitation spectra show redshift of host lattice and charge transfer emission bands in La(OH)3 while bands that correspond to Eu3+f–f transitions are placed at same wavelengths in both samples. Photoluminescence spectra recorded over the temperature range from 10 K to 300 K show that intensities of emission lines in Eu3+-doped La2O3 do not depend on temperature as much as in La(OH)3 sample. Observed dominant 5D07F2 and markedly visible 5D07F0 emissions in doped La2O3 indicate that Eu3+ ion is located in a structural site without an inversion center. On the other hand, in Eu3+-doped La(OH)35D07F0 transition is barely visible while 5D07F2 is not prominent, and with temperature drop three 5D07FJ (J=1, 2, 4) transitions become almost of the same intensity. In both La2O3 and La(OH)3 structures Eu3+ ion replaces La3+ in non-centrosymmetric C3v and C3h crystallographic sites, respectively, and difference in symmetry of the crystal field around europium ion is explained by comparing shape and volume of these sites. Decay times of the 5D0- level recorded over the temperature range 10−300 K revealed that emission lifetime values in La2O3 (~0.7 ms) are almost two times higher than in La(OH)3 (~0.4 ms), and unlike in La2O3, lifetime in La(OH)3 is temperature dependent.  相似文献   

6.
Phase formation and photophysical properties of bismuth doped sodium tantalum oxide (perovskite, defect pyrochlore) nanoparticles prepared by a hydrothermal method were studied in detail. It was revealed that the synthesis conditions like NaOH concentration and bismuth precursor (NaBiO3·2H2O) markedly affect the crystal structure of sodium tantalum oxide. At low NaOH concentration and high bismuth precursor (NaBiO3·2H2O) content, Bi doped Na2Ta2O6 (defect pyrochlore) phase was predominantly formed, while at higher NaOH concentration, Bi doped NaTaO3 (perovskite) phase was formed. It was observed that the defect pyrochlore (Bi doped Na2Ta2O6) phase was formed and stabilized by the presence of dopant precursor (NaBiO3·2H2O). The chemical analysis of the samples confirmed the doping of Bi3+ cations in both phases. Doping of bismuth enabled visible light absorption up to 500 nm in perovskite and defect pyrochlore type sodium tantalum oxide. Bi doped NaTaO3 samples showed better performance for the photocatalytic degradation of rhodamine B than that of Bi doped Na2Ta2O6, under visible light irritation (λ>420 nm). The present results shed light on phase formation of sodium tantalate and these results are useful in understanding properties of NaTaO3 based compounds, synthesized by the hydrothermal method.  相似文献   

7.
A series of Er3+-doped Bi2O3-B2O3-SiO2-Na2O glasses with different hydroxyl groups were prepared and the interaction between the Er3+ ions and OH groups was investigated. Infrared spectra were measured in order to calculate the exact content of OH groups in samples. The observed increase of the fluorescence lifetime with the oxygen bubbling time has been related to the reduction in the OH content concentration evidenced by infrared (IR) absorption spectra, which confirmed that the OH groups were dominant quenching centers of excited Er3+ and a cause of concentration quenching of 1.5 μm band emission. Various nonradiative decay rates from 4I13/2 of Er3+ with the change of OH content were determined from the fluorescence lifetimes and radiative decay rates, which were calculated on the basis of Judd-Ofelt theory.  相似文献   

8.
Highly uniform three-dimensional dendrite-like CeO2 crystallites were successfully prepared in large quantities with a thermal decomposition of precursor approach applied. The precursor with an average size of 10 μm was prepared in an aqueous solution containing Ce(NO3)3·6H2O, CO(NH2)2 and ammonia at 160 °C with no additional phase. The influence of ammonia on the dendrites formation was discussed. The dendritic pattern of precursor almost remained in the as-prepared product. The optical absorption spectrum indicates that CeO2 dendrites have a direct band gap of 3.52 eV.  相似文献   

9.
The work presents a detailed analysis of the sequencing of the structural phase transitions in NH3(CH2)3NH3CdCl4 crystal by differential scanning calorimetry (DSC), X-ray, infrared, far infrared and Raman spectroscopy. DSC studies have shown that in analyzed crystal occurring one reversible continuous phase transition at 375/374 K (on heating/cooling). Observed in Nujol and Fluorolube mulls in the wide temperature range between 296 K and 413 K spectral changes through the structural phase transition can be attributed to an onset of motion of cations. An assignment of some bands due to internal modes has been also proposed.  相似文献   

10.
We have investigated the molecular motions of TRIS+ ([(CH2OH)3CNH3]+) and ions in the [(CH2OH)3CNH3]2SiF6 crystal below room temperature from the measurements of the spin-lattice relaxation time T1 and the NMR absorption line of 1H and 19F nuclei, in order to elucidate the changes of the molecular motions by the phase transition of Tc=178 K. The narrowing of the 19F-NMR line was observed around Tc=178 K and the reorientation of the anion appears above Tc. Moreover, from the analysis of the temperature dependence of T1, we have observed that the activation energy of the reorientational motion of ions changes from 0.168 eV (T>Tc) to 0.185 eV (T<Tc). Based on these results, we found that the reorientational motion of ions is closely related to the origin of the phase transition at Tc. In addition, from the measurement of the 1H-NMR line, we also found that the reorientational motion of H2 in the -CH2OH group becomes active accompanied by the phase transition.  相似文献   

11.
The effect of pressure on the phase transformations in Sm2(MoO4)3, Gd2(MoO4)3 and Eu2(MoO4)3 crystals has been studied in situ using synchrotron radiation. All three isostructural compounds undergo a structural phase transition at 2.2-2.8 GPa to a new phase, which is interpreted as a possible precursor of amorphization. Amorphization in these crystals occurs irreversibly over a wide pressure range, and its mechanism, interpreted as a chemical decomposition, is found to be weakly affected by the degree of hydrostaticity.  相似文献   

12.
Pure LaAlO3 nanoparticles were synthesized, using a citrate-precursor technique. La(NO3)3, Al(NO3)3, and C3H4(OH)(COOH)3, in a molar ratio of 1:1:4.5, were dissolved in deionized water. The pH of the aqueous solution was adjusted using NH4OH. After drying, the citrate precursors were charred at 350 °C, followed by calcination at different temperatures. The thermochemical behavior of the charred citrate precursor to form LaAlO3 was investigated using X-ray diffractometry, infrared spectroscopy, thermogravimetric analysis, and differential thermal analysis. While the charred specimen obtained at pH=2 (without NH4OH addition) was composed of LaAl(OOCH2)3, the charred specimens obtained at pH>2 were composed of LaAlO3−x−y(CO3)x(OH)2y. All these metallic salts were decomposed at temperatures between 600 and 780 °C to form crystalline LaAlO3 but calcining the specimens in air at ?800 °C were required to remove all residual chars to produce pure LaAlO3. At 900 °C, the citrate-derived particles obtained at pH>2 were composed of LaAlO3 crystallites with an average size of ∼30 nm.  相似文献   

13.
用光电子成像技术和从头算法研究Ag-(CH3OH)x (x=1, 2)和AgOCH3-. 从AgOCH3-振动分辨的光电子谱得 到AgOCH3-的绝热和垂直电离能分别为1.29(2)和1.34(2) eV. Ag-(CH3OH)1,2相似文献   

14.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

15.
Cr(III)-doped Cd(HPO4)Cl·[H3N(CH2)6NH3]0.5, a new-layered cadmium phosphate, is synthesized in acidic condition at room temperature. EPR and optical studies are carried out at room temperature. Polycrystalline EPR spectrum reveals the presence of two sites of Cr(III) ions in this layered phosphate lattice with zero-field splitting values of 24.24 and 7.65 mT, indicating that Cr(III) ions are in distorted octahedral sites. The optical absorption spectrum of the sample indicates near octahedral symmetry for the dopant ions. Crystal field, inter-electronic and bonding parameters are evaluated by collaborating EPR and optical data. The evaluated parameters suggest the mode of entry of Cr(III) ion into the layered phosphate as interstitial site, and bonding between the metal and ligand is partially covalent.  相似文献   

16.
Pyrochlore with mixed-valence Ce was synthesized by firing and annealing Ce(NO3)4, TiO2, and Ca(OH)2 with a stoichiometry of CaCeTi2O7 at 1300 °C. The product contains Ce-pyrochlore, Ce-rich perovskite, CeO2 (cerianite), and minor CaO. Electron energy-loss spectroscopy (EELS) revealed both Ce4+ and Ce3+ in the Ce-pyrochlore with a Ce4+ to total Ce (Ce4+/ΣCe) of 0.80 giving . Cerium in the perovskite and cerianite is dominated by Ce3+ and Ce4+, respectively. High-resolution transmission electron microscope (HRTEM) images show that the boundary between Ce-pyrochlore and Ce-rich perovskite is semi-coherently bonded. The orientational relationship between the neighboring Ce-pyrochlore and Ce-rich perovskite is not random. Ce-pyrochlore (CaCeTi2O7) is a chemical analogue for CaPuTi2O7, which is a proposed ceramic waste form for deposition of excess weapons-usable Pu in geological repositories. It is postulated, based on the presence of Ce3+ in the Ce-pyrochlore, that neutron poisons such as Gd can be incorporated into the CaPuTi2O7 phase.  相似文献   

17.
A controlled AlGaN surface preparation method avails to improve the performance of GaN-based HEMT devices. A comparative investigation of chemical treatments by (1:10) NH4OH:H2O and (1:10) HCl:H2O solutions for AlGaN surface preparation by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) is reported. The XPS data clearly reveal that the native oxide on AlGaN was composed of Al2O3, Ga2O3 and NO compounds. These compounds were etched off partially or completely by both the chemical treatments, namely NH4OH or HCl solutions, independently. The HCl treatment etches out Al2O3 completely from native oxide unlike NH4OH treatment. The HCl treatment results in larger amount of carbon segregation on AlGaN surfaces, however it removes all oxides’ compounds faster than NH4OH treatment. The AFM results reveal the improvement of surface morphology by both the chemical treatments leading to the surface roughness RMS values of 0.24 nm and 0.21 nm for NH4OH and HCl treated AlGaN layers, respectively.  相似文献   

18.
GaAs(100)表面硫钝化的新方法:CH3CSNH2/NH4OH处理   总被引:2,自引:0,他引:2       下载免费PDF全文
建立了一种硫钝化GaAs(100)表面的新方法,即CH3CSNH2/NH4OH溶液处理,应用同步辐射光电子能谱(SRPES)和X射线光电子能谱(XPS)表征了该钝化液处理的n-GaAs(100)表面的成键,特性和电子态.结果表明,经过处理的n-GaAs(100)表面,S既与As成键也与Ga成键,形成S与GaAs的新界面,并且Ga和As的氧化物被移走,这标志着CH3CSNH2/NH4关键词:  相似文献   

19.
本文利用266 nm波长的激光及程序升温脱附的方法研究了甲醇在ZnO(0001)表面的光催化反应. TPD结果显示部分的CH3OH以分子的形式吸附在ZnO(0001)表面,而另外一部分在表面发生了解离. 实验过程中探测到H2,CH3·,H2O,CO,CH2O,CO2和CH3OH这些热反应产物. 紫外激光照射实验结果表明光照可以促进CH3OH/CH3O·解离形成CH2O,在程序升温或光照的过程中它又可以转变为HCOO-. CH2OHZn与OHad反应在Zn位点上形成H2O分子. 升温或光照都能促进CH3O·转变为CH3·. 该研究对CH3OH在ZnO(0001)表面的光催化反应机理提供了一个新的见解.  相似文献   

20.
Chemical preparation, calorimetric studies, crystal structure and spectroscopic investigations are given for a new noncentrosymmetric organic cation monophosphate [2,5-(CH3)2C6H3NH3]H2PO4. This compound is orthorhombic P212121 with the following unit-cell parameters: a=5.872(4), b=20.984(3), c=8.465(1) Å, Z=4, V=1043.0(5) Å3 and Dx=1.396 g cm−3. Crystal structure has been solved and refined to R=0.048 using 2526 independent reflections. Structure can be described as an inorganic layer parallel to (a,b) planes between which organic groups [2,5-(CH3)2C6H3NH3]+ are located. Multiple hydrogen bonds connecting the different entities of compound thrust upon three-dimensional network a noncentrosymmetric configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号