首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the clusters [Ru3(micro(3)-NPPh(3))(micro(3)-OSiMe(3))(micro-X)(micro(C,O)-OC[double bond]NPPh(3))(micro-CO)(CO)6] (X = NCO, 2; X = Cl, 3), which were prepared by a pyrolytic reaction of Ph(3)PNSiMe(3) with Ru(3)(CO)12, the ligands result from a cluster-mediated pseudo-Hofmann rearrangement involving the micro-NCO, micro(C,O)-Ph(3)P[double bond]N-CO and micro(3)-NPPh(3) fragments.  相似文献   

2.
The superoxo complex Cr aq( (18)O (18)O) (2+) reacts with (CH 3) 3C(O) (16)O (16)O (*) to generate quantitative yields of mixed-label dioxygen, (18)O (16)O, demonstrating that this cross-reaction involves head-to-head interaction between the metal-activated and alkyl-activated dioxygen.  相似文献   

3.
The reaction of Cp anion, [C 5 H 4 CH 2 CH 2 P(TMS)Mes] m with (CH 3 CN) 3 Mo(CO) 3 leads to the formation of [( m 5 --C 5 H 4 CH 2 CH 2 --P(TMS)Mes)Mo(CO) 3 ] m , which then reacts with MeI to give a metallaphosphacyclopropane complex with silyl migration.  相似文献   

4.
The effect of H-bond donation to the thiolate ligand of (eta(5)-C(5)H(5))Fe(CO)(2)SR (1) to give H-bond adducts (1 small middle dotHX) and eventually protonation to give [(eta(5)-C(5)H(5))Fe(CO)(2)(HSR)](+) (1H(+)()) has been investigated experimentally and computationally. The electronic structures of 1(R = Me), several derivatives of 1(R = Me) small middle dotHX, and 1(R = Me)H(+)() have been investigated using DFT (density functional theory) computational methods. As previously suggested, these calculations indicate the HOMO of 1 is Fedpi-Sppi antibonding and largely sulfur in character. The calculations indicate the electronic structure of 1 is not altered markedly by H-bond donation to the S center, but protonation results in a reorganization of the electronic structure of 1H(+)() and a HOMO that is largely metal in character. The reduction of Fe-S distances upon protonation of 1(R = Ph) to give 1(R = Ph)H(+)() small middle dotBF(4)()(-)() (2.282(2) and 2.258(2) A, respectively), as determined by single-crystal X-ray crystallography, also indicates diminished Fedpi-Sppi antibonding. Using the carbonyl stretching frequencies as a gauge of the donor ability of the thiolate ligand, we conclude that H-bonding has a continuous effect on the donor properties of the thiolate ligand of 1 (i.e., is a function of the pK(a) of the H-bond donor). A discontinuous effect results when the pK(b) of 1 is reached and the complex is protonated. For our study of 1, the maximal effect of H-bonding is about 30% of protonation. Because the position of acid-base equilibrium depends on the relative basicities of the thiolate ligand and the conjugate base of the H-bond donor (and the relative heats of solvation of the acids and their conjugate bases), a true continuum of effects can be anticipated only for systems that are pK-matched in their given environments. Thus, when the conjugate base of the H-bond donor is a stronger base than the thiolate ligand (as in the present case), H-bond donation has a relatively small effect, but protonation triggers a large, discontinuous effect on the electronic structure of 1.  相似文献   

5.
We present extensive molecular dynamics simulations of the motion of a single linear rigid molecule in a two-dimensional random array of fixed overlapping disklike obstacles. The diffusion constants for the center of mass translation, D(CM), and for rotation, D(R), are calculated for a wide range of the molecular length, L, and the density of obstacles, rho. The obtained results follow a master curve Drho(micro) approximately (L(2)rho)(-nu) with an exponent micro=-3/4 and 1/4 for D(R) and D(CM), respectively, that can be deduced from simple scaling and kinematic arguments. The nontrivial positive exponent nu shows an abrupt crossover at L(2)rho=zeta(1). For D(CM) we find a second crossover at L(2)rho=zeta(2). The values of zeta(1) and zeta(2) correspond to the average minor and major axis of the elliptic holes that characterize the random configuration of the obstacles. A violation of the Stokes-Einstein-Debye relation is observed for L(2)rho>zeta(1), in analogy with the phenomenon of enhanced translational diffusion observed in supercooled liquids close to the glass transition temperature.  相似文献   

6.
Ritthiwigrom T  Pyne SG 《Organic letters》2008,10(13):2769-2771
The total synthesis of (+)-uniflorine A has allowed for the structural reassignment and the configurational assignment of the alkaloid (-)-uniflorine A from a 1,2,6,7,8-pentahydroxyindolizidine structure to (-)-(1 R,2 R,3 R,6 R,7 S,7a R)-1,2,6,7-tetrahydroxy-3-hydroxymethylpyrrolizidine (6- epi-casuarine).  相似文献   

7.
The construction of a designed beta-hairpin structure, containing a central three-residue loop has been successfully achieved in the synthetic nonapeptide Boc-Leu-Phe-Val-(D)Pro-(L)Pro-(D)Ala-Leu-Phe-Val-OMe (2). The design is based on expanding the two-residue loop established in the peptide beta-hairpin Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (1). Characterization of the registered beta-hairpins in peptides 1 and 2 is based on the observation of key nuclear Overhauser effects (NOEs) in CDCl(3) and CD(3)OH. Solvent titration and temperature dependence of NH chemical shifts establish the identity of NH groups involved in interstrand hydrogen bonding. In peptide 2, the antiparallel registry is maintained, with the formation of a (D)Pro-(L)Pro-(D)Ala loop, stabilized by a 5-->1 hydrogen bond between Val3 CO and Leu7 NH groups (C(13), alpha-turn) and a 3-->1 hydrogen bond between (D)Pro4 CO and (d)Ala6 NH groups (C(7), gamma-turn). NMR derived structures suggest that in peptide 2, (d)Ala(6) adopts an alpha(L) conformation. In peptide 1, the (D)Pro-(L)Pro segment adopts a type II' beta-turn. Replacement of (D)Ala (6) in peptide 2 by (L)Ala in peptide 3 yields a beta-hairpin conformation, with a central (D)Pro-(L)Pro two-residue loop. Strand slippage at the C-terminus results in altered registry of the antiparallel strands.  相似文献   

8.
Employing a semi-rigid di-1,2,4-triazole ligand leads to the formation of new MOFs [Cu(4)(L)(4)(SO(4))(4)]·4[Cu(H(2)O)(6)(SO(4))] (3) and [Cu(6)(L)(3)(SO(4))(5)(OH)(2)(H(2)O)(6)]·13H(2)O (4). The frameworks can be synthesized independently, but a reaction occurs in water wherein kinetic product 3 is used as a reagent to synthesize the topologically distinct thermodynamic product 4.  相似文献   

9.
The reactivity of the silylsilylene [{PhC(NtBu)(2)}SiSi(Cl){(NtBu)(2)C(H)Ph}] (2) towards diphenylacetylene, azobenzene, 2,6-diisopropylphenyl azide, sulfur, and selenium is described. The reaction of 2 with one equivalent of azobenzene in toluene afforded compound 3, which is the first example of a 1,2-diaza-3,4-disilacyclobutane containing a pentacoordinate silicon center. The formation of 3 can be explained by a [1+2] cycloaddition of the divalent Si center in 2 with PhN=NPh to form a diazasilacyclopropane intermediate, which then undergoes a 1,2-chlorine shift to release the ring strain to form 3. Similarly, the reaction of 2 with one equivalent of diphenylacetylene in toluene afforded the 1,2-disilacyclobutene 4, which contains a pentacoordinate silicon center. The reaction of 2 with 1.6 equivalents of 2,6-diisopropylphenylazide in toluene afforded the silaimine [LSi(=NAr)N(Ar)L'] (5, L=PhC(NtBu)(2) , L'=Si(Cl){(NtBu)(2)C(H)Ph}, Ar=2,6-iPr(2)C(6)H(3)). The formation of 5 can be explained by an oxidative addition of the divalent Si center in 2 with ArN(3) to afford a silaimine intermediate, which then reacts with another molecule of ArN(3) to give compound 5. The reaction of 2 with elemental sulfur in toluene afforded the chlorosilanethione [LSi(S)Cl] (6) and dithiodisiletane [{Ph(H)C(NtBu)(2) }Si(μ-S)](2) (7). Treatment of 2 with elemental selenium in THF afforded the di(silaneselone) [LSi(Se)Si(Se)L] (8). Evidently, the divalent Si center in 2 undergoes oxidative addition with chalcogens to afford a silylsilanechalcogenone intermediate, which then displaces ":Si{(NtBu)(2)C(H)Ph}" and "ClSi{(NtBu)(2) C(H)Ph}" to form 6 and 8, respectively. Moreover, compound 8 was synthesized by the reaction of [{PhC(NtBu)(2)}Si:](2) (10) with elemental selenium in THF. The results show that the reactions of 2 are initiated by oxidative addition of the divalent silicon center, and then the intermediate formed undergoes a rearrangement involving the diaminochlorosilyl substituent to form compounds 3-8. These products have been characterized by NMR spectroscopy and X-ray crystallography.  相似文献   

10.
The preparation of layered [La(H(3)nmp)] as microcrystalline powders from optimized microwave-assisted synthesis or dynamic hydrothermal synthesis (i.e., with constant rotation of the autoclaves) from the reaction of nitrilotris(methylenephosphonic acid) (H(6)nmp) with LaCl(3)·7H(2)O is reported. Thermogravimetry in conjunction with thermodiffractometry showed that the material undergoes a microcrystal-to-microcrystal phase transformation above 300 °C, being transformed into either a three-dimensional or a two-dimensional network (two models are proposed based on dislocation of molecular units) formulated as [La(L)] (where L(3-) = [-(PO(3)CH(2))(2)(NH)(CH(2)PO(2))O(1/2)-](n)(3n-)). The two crystal structures were solved from ab initio methods based on powder X-ray diffraction data in conjunction with structural information derived from (13)C and (31)P solid-state NMR, electron microscopy (SEM and EDS mapping), FT-IR spectroscopy, thermodiffractometry, and photoluminescence studies. It is shown that upon heating the coordinated H(3)nmp(3-) anionic organic ligand undergoes a polymerization (condensation) reaction to form in situ a novel and unprecedented one-dimensional polymeric organic ligand. The lanthanum oxide layers act, thus, simultaneously as insulating and templating two-dimensional scaffolds. A rationalization of the various steps involved in these transformations is provided for the two models. Photoluminescent materials, isotypical with both the as-prepared ([(La(0.95)Eu(0.05))(H(3)nmp)] and [(La(0.95)Tb(0.05))(H(3)nmp)]) and the calcined ([(La(0.95)Eu(0.05))(L)]) compounds and containing stoichiometric amounts of optically active lanthanide centers, have been prepared and their photoluminescent properties studied in detail. The lifetimes of Eu(3+) vary between 2.04 ± 0.01 and 2.31 ± 0.01 ms (considering both ambient and low-temperature studies). [La(H(3)nmp)] is shown to be an effective heterogeneous catalyst in the ring opening of styrene oxide with methanol or ethanol, producing 2-methoxy-2-phenylethanol or 2-ethoxy-2-phenylethanol, respectively, in quantitative yields in the temperature range 40-70 °C. The material exhibits excellent regioselectivity to the β-alkoxy alcohol products even in the presence of water. Catalyst recycling and leaching tests performed for [La(H(3)nmp)] confirm the heterogeneous nature of the catalytic reaction. Catalytic activity may be attributed to structural defect sites. This assumption is somewhat supported by the much higher catalytic activity of [La(L)] in comparison to [La(H(3)nmp)].  相似文献   

11.
Co-crystallisation of 1,8-naphthalenedicarboxylic acid (1,8-nap) with trans-1-(3-pyridyl)-2-(4-pyridyl)ethylene (3,4-bpe) gives a discrete molecular solid-state assembly, 2(3,4-bpe).2(1,8-nap) 1, that is held together by four O-H...N hydrogen bonds wherein the diacid directs a regiocontrolled [2 + 2] photodimerization; the reaction occurs by way of a single-crystal-to-single-crystal transformation.  相似文献   

12.
The reaction of [RuCp(IPri)(CH3CN)2]PF6 (IPri = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) with HCCR (R = COOMe, COOEt, COMe) yields the allyl carbene complexes [RuCp(=C(R)-eta3-CHC(R)CH-IPri)]PF6. This conversion involves selective head-to-tail coupling of two alkynes and an unusual migratory insertion of the N-heterocyclic carbene into the ruthenium-carbon double bond of a ruthenacyclopentatriene intermediate.  相似文献   

13.
We have structurally and magnetically characterized a total of 12 complexes based on the Single-Molecule Magnet (SMM) [MnIII6O2(sao)6(O2CH)2(MeOH) 4] (1) (where sao2- is the dianion of salicylaldoxime or 2-hydroxybenzaldeyhyde oxime) that display analogous structural cores but remarkably different magnetic behaviors. Via the use of derivatized oxime ligands and bulky carboxylates we show that it is possible to deliberately increase the value of the spin ground state of the complexes [Mn6O2(Me-sao)6(O2CCPh3)2(EtOH)4] (2), [Mn6O2(Et-sao)6(O2CCMe3)2(EtOH)5] (3), [Mn6O2(Et-sao)6(O2CPh2OPh)2(EtOH)4] (4), [Mn6O2(Et-sao)6(O2CPh4OPh)2(EtOH)4(H2O)2] (5), [Mn6O2(Me-sao)6(O2CPhBr)2(EtOH)6] (6), [Mn6O2(Et-sao)6(O2CPh)2(EtOH)4(H2O)2] (7), [Mn6O2(Et-sao)6{O2CPh(Me)2}2(EtOH)6] (8), [Mn6O2(Et-sao)6(O2C11H15)2(EtOH)6] (9), [Mn6O2(Me-sao)6(O2C-th)2(EtOH)4(H2O)2] (10), [Mn6O2(Et-sao)6(O2CPhMe)2(EtOH)4(H2O)2] (11), and [Mn6O2(Et-sao)6(O2C12H17)2(EtOH)4(H2O)2] (12) (Et-saoH2 = 2-hydroxypropiophenone oxime, Me-saoH2 = 2-hydroxyethanone oxime, HO2CCPh3 = triphenylacetic acid, HO2CCMe3 = pivalic acid, HO2CPh2OPh = 2-phenoxybenzoic acid, HO2CPh4OPh = 4-phenoxybenzoic acid, HO2CPhBr = 4-bromobenzoic acid, HO2CPh(Me)2 = 3,5-dimethylbenzoic acid, HO2C11H15 = adamantane carboxylic acid, HO2C-th = 3-thiophene carboxylic acid, HO2CPhMe = 4-methylbenzoic acid, and HO2C12H17 = adamantane acetic acid) in a stepwise fashion from S = 4 to S = 12 and, in-so-doing, enhance the energy barrier for magnetization reorientation to record levels. The change from antiferromagnetic to ferromagnetic exchange stems from the "twisting" or "puckering" of the (-Mn-N-O-)3 ring, as evidenced by the changes in the Mn-N-O-Mn torsion angles.  相似文献   

14.
The multivalent binding of a supramolecular complex at a multivalent host surface by combining the orthogonal beta-cyclodextrin (CD) host-guest and metal ion-ethylenediamine coordination motifs is described. As a heterotropic, divalent linker, an adamantyl-functionalized ethylenediamine derivative was used. This was complexed with Cu(II) or Ni(II). The binding of the complexes to a CD self-assembled monolayer (SAM) was studied as a function of pH by means of surface plasmon resonance (SPR) spectroscopy. A heterotropic, multivalent binding model at interfaces was used to quantify the multivalent enhancement at the surface. The Cu(II) complex showed divalent binding to the CD surface with an enhancement factor higher than 100 relative to the formation of the corresponding divalent complex in solution. Similar behavior was observed for the Ni(II) system. Although the Ni(II) system could potentially be trivalent, only divalent binding was observed at the CD SAMs, which was confirmed by desorption experiments.  相似文献   

15.
A molecular capsule based on ionic interactions between two oppositely charged calix[4]arenes, 1 and 2, was assembled both in solution and on a surface. In solution, the formation of the equimolar assembly 1.2 was studied by (1)H NMR, ESI-MS, and isothermal titration calorimetry, giving an association constant (K(a)) of 7.5 x 10(5) M(-1). A beta-cyclodextrin self-assembled monolayer (beta-CD SAM) on gold was used as a molecular printboard to anchor the tetraguanidinium calix[4]arene (2). The binding of tetrasulfonate calix[4]arene 1 was monitored by surface plasmon resonance spectroscopy. Rinsing of the surface with a high ionic strength aqueous solution allows the removal of the tetrasulfonate calix[4]arene (1), while by rinsing with 2-propanol it is possible to achieve the complete desorption of the tetraguanidinium calix[4]arene (2) from the beta-CD SAM. The K(a) for the capsule formation on a surface is 3.5 x 10(6) M(-1), thus comparing well with the K(a) determined in solution.  相似文献   

16.
Oligo(N(6)-carbobenzyloxy-L-lysine) (OCBL) with n = 8 (n is the number-average degree of polymerization) was synthesized by the n-propylamine-catalyzed ring-opening polymerization of N(6)-carbobenzyloxy-L-lysine N-carboxylic anhydride, which was derived from N(6)-carbobenzyloxy-L-lysine. The formation of two-dimensionally well-ordered strip array monolayer films of the OBCL oligopeptide on graphite substrates was first succeeded by a conventional solution spin-coating process. The ordered strip array monolayer structure was characterized in detail by atomic force microscopy, and its assembly mechanism was examined.  相似文献   

17.
Wood-based activated carbon was modified by deposition of silver using Tollens method. Adsorbents with various contents of silver were used to study NO(2) and NO (the product of NO(2) reduction by carbon) retention. The surface of the initial and exhausted materials was characterized using adsorption of nitrogen, XRD, SEM/EDX, FTIR and TA. The results indicated that with an increasing content of silver on the surface the capacities to retain NO(2) and NO increase until the plateau is reached. The performance depends on the dispersion of nanoparticles and their chemistry. Highly dispersed small silver metal particles promote formation of chelates with NO(2) and/or with NO. An excess of Tollens reagent results in formation of larger silver crystals and silver oxide nanoparticles. If sufficiently dispersed, they also enhance the retention of NO(2) via formation of nitrates deposited in the pore system. The surface of the carbon matrix is also active in NO(2) retention, providing the small pores and edges of graphene layers, where the reductions of NO(2)/oxidation of carbon take place.  相似文献   

18.
Complex OsH{eta5-C5H4(CH2)2NMe2}(P(i)Pr3)2 (1) reacts with 1 equiv of trifluoromethanesulfonic acid (HOTf) and trifluoromethanesulfonic acid-d1 (DOTf) to produce the dihydride and hydride-deuteride complexes, [OsHE{eta5-C5H4(CH2)2NMe2}(P(i)Pr3)2]OTf (E = H (2), D (2-d1), respectively. Treatment of 2 and 2-d1 with a second equivalent of HOTf gives [OsHE{eta5-C5H4(CH2)2NHMe2}(P(i)Pr3)2][OTf]2 (E = H (3), D (3-d1) as a result of the protonation of the nitrogen atom. While the hydride and deuteride ligands of 2, 2-d1, 3, and 3-d1 do not undergo any H/D exchange process with the solvent, in acetone-d6, the NH proton of 3 and 3-d1 changes places with a deuterium atom of the solvent to yield [OsHE{eta5-C5H4(CH2)2NDMe2}(P(i)Pr3)2][OTf]2 (E = H (3-Nd1), D (3-d2)). Complex 3-Nd1 can also be obtained from the treatment of complex 2 with DOTf in dichloromethane. No exchange process between the hydride and the ND positions in 3-Nd1 or between the deuteride and NH positions in 3-d1 has been observed. Treatment of 3-Nd1 and 3-d1 with sodium methoxide results in a selective reaction of the base with the ammonium group to regenerate 2 and 2-d1, respectively. Complex 1 also reacts with methyl and methyl-d3 trifluoromethanesulfonate (CH3OTf and CD3OTf, respectively) to give [OsH{eta5-C5H4(CH2)2NMe2CE3}(P(i)Pr3)2]OTf (E = H (4), D (4-d3)) as a result of the addition of the CE3 (E = H, D) group to the nitrogen atom. Complex 4 has been characterized by an X-ray diffraction analysis. It reacts with a second molecule of CH3OTf or CD3OTf to produce [OsH{eta5-C5H4(CH2)2NMe3}{CH2CH(CH3)P(i)P2}(P(i)Pr3)[OTf]2 (5). Similarly, complex 4-d3 reacts with a second molecule of CH3OTf or CD3OTf to yield [OsH{eta5-C5H4(CH2)2NMe2CD3}{CH2CH(CH3)P(i)P2}(P(i)Pr3)[OTf]2 (5-d3). In acetonitrile, complex 5 evolves to an equilibrium mixture of the acetonitrile adducts [Os{eta5-C5H4(CH2)2NMe3}(NCCH3)(P(i)Pr3)2][OTf]2 (7) and [Os{eta5-C5H4(CH2)2NMe3}(NCCH3)2(P(i)Pr3)][OTf]2 (8). In methanol or methanol-d4, complex 4 is not stable and loses trimethylamine to give the vinylcyclopentadienyl derivatives [OsHE(eta5-C5H4CH=CH2)(P(i)Pr3)2]OTf (E = H (9), D (9-d1)) as a result of the protonation or deuteration of the metallic center and a subsequent Hofmann elimination. Protonation of 4 with HOTf gives the dihydride-trimethylammonium derivative [OsH2{eta5-C5H4(CH2)2NMe3}(P(i)Pr3)2][OTf]2 (10). Treatment of 9 with sodium methoxide produces OsH(eta5-C5H4CH=CH2)(P(i)Pr3)2 (11).  相似文献   

19.
Vibrational spectra of the conjugate acid of Me(2)NCH(2)CH(2)CH(2)CH(2)NMe(2) (N,N,N',N'-tetramethylputrescine) have been examined in the gaseous and crystalline phases using Infrared Multiple Photon Dissociation (IRMPD) spectroscopy, Inelastic Neutron Scattering (INS), and high pressure Raman spectroscopy. A band observed near 530 cm(-1) is assigned to the asymmetric stretch of the bridging proton between the two nitrogens, based on deuterium substitution and pressure dependence. The NN distance measured by X-ray crystallography gives a good match to DFT calculations, and the experimental band position agrees with the value predicted from theory using a 2-dimensional potential energy surface. The reduced dimensionality potential energy surface, which treats the ion as though it possesses a linear NHN geometry, shows low barriers to proton transit from one nitrogen to the other, with zero point levels close to the barrier tops. In contrast, two other related systems containing strong hydrogen bonds do not exhibit the same spectroscopic signature of a low barrier hydrogen bond (LBHB). On the one hand, the IRMPD spectra of the conjugate acid ions of the amino acid N,N,N',N'-tetramethylornithine (in which the two nitrogens have different basicities) show fewer bands and no comparable isotopic shifts in the low frequency domain. On the other hand, the IRMPD spectrum of the shorter homologue Me(2)NCH(2)CH(2)CH(2)NMe(2) (N,N,N',N'-tetramethyl-1,3-propanediamine), for which the NHN bond angle deviates substantially from linearity, displays more than one band in the 1100-1400 cm(-1) domain, which vanish as a consequence of deuteration.  相似文献   

20.
1,4-Dichlorobenzene(cyclopentadienyl)iron(II) hexafluorophosphate reacts with the carbanion derived from 3-ethoxy-6-methylpyridazine N-oxide to give a Yanovsky-type adduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号