首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An interesting two-step passivation (with ledge structure and sulphide based chemical treatment) on base surface, for the first time, is demonstrated to study the temperature-dependent DC characteristics and noise performance of an InGaP/GaAs heterojunction bipolar transistor (HBT). Improved transistor behaviors on maximum current gain βmax, offset voltage ΔVCE, and emitter size effect are obtained by using the two-step passivation. Moreover, the device with the two-step passivation exhibits relatively temperature-independent and improved thermal stable performances as the temperature is increased. Therefore, the two-step passivationed device can be used for high-temperature and low-power electronics applications.  相似文献   

2.
In this work, the characteristics of InGaP/GaAs heterojunction bipolar transistors (HBTs) with various emitter-ledge thicknesses are comprehensively studied and demonstrated. Based on the two-dimensional analysis, some important parameters such as the recombination rate and DC characteristics are studied. The simulated analyses are in good agreement with experimental results. It is known that better HBT performance, including lower recombination rate in the surface channel, and higher DC current gain are obtained in the studied devices with the emitter ledge thickness between 100 and 200 Å.  相似文献   

3.
肖盈  张万荣  金冬月  陈亮  王任卿  谢红云 《物理学报》2011,60(4):44402-044402
众所周知,基区"能带工程"可以改善Si1-xGe x 基区异质结双极晶体管(HBT)的直流、频率和噪声等特性,但"能带工程"对HBT热学特性的影响的研究还很少。本文基于三维热电反馈模型,分析了"能带工程"对射频功率SiGe HBT热性能的影响。考虑到电流增益随温度的变化以及发射结电压负温度系数,给出了器件热稳定所需最小镇流电阻(REmin)的表达式,在此基础上给出了非均匀镇流电阻的设计,进一步提高了SiGe HBT的热稳定性 关键词: SiGe HBT Ge组分 热电反馈 镇流电阻  相似文献   

4.
宽温区大电流下的热不稳定性严重制约着功率SiGe 异质结双极晶体管 (HBT) 在射频和微波电路中的应用.为改善器件的热不稳定性, 本文利用SILVACO TCAD建立的多指功率SiGe HBT模型, 分析了器件纵向结构中基区Ge组分分布对微波功率SiGe HBT电学特性和热学特性的影响. 研究表明, 对于基区Ge组分为阶梯分布的HBT, 由于Ge组分缓变引入了少子加速电场, 使它与均匀基区Ge组分HBT相比, 具有更高的特征频率fT, 且电流增益βfT随温度变化变弱, 这有利于防止器件在宽温区工作时电学特性的漂移.同时, 器件整体温度有所降低, 但器件各指温度分布均匀性较差.考虑多指HBT各发射极指散热能力存在差异, 在器件纵向结构设计为基区Ge组分阶梯分布的同时, 对其横向版图进行发射极指间距渐变结构设计, 用于改善器件各指温度分布的均匀性, 进而提高HBT的热稳定性.结果表明, 与基区Ge组分为均匀分布的等发射极指间距结构HBT相比, 新器件各指温度分布均匀性明显改善, fT保持了较高的值, 且βfT 随温度变化不敏感, 热不稳定性得到显著改善, 显示了新器件在宽温区大电流下工作的优越性. 关键词: SiGe 异质结双极晶体管 Ge组分分布 发射极指间距渐变技术 热稳定性  相似文献   

5.
刘静  武瑜  高勇 《物理学报》2014,63(14):148503-148503
提出了一种沟槽型发射极SiGe异质结双极化晶体管新结构. 详细分析了新结构中沟槽型发射极的引入对器件性能的影响,并对其机理进行研究. 新型发射极结构通过改变发射极电流路径使电阻分区并联,在不增大结电容的前提下,有效减小发射极电阻,提高器件的频率特性. 结果表明,新结构器件的截止频率和最大振荡频率分别增加至100.2 GHz和134.4 GHz,更重要的是沟槽型发射极结构的引入,在提高器件频率特性的同时,不会降低器件的电流增益,也不会增加结电容,很好实现了频率特性、电流增益和结电容之间的折中. 对沟槽型发射极进行优化设计,改变侧墙高度和侧墙宽度. 沟槽型发射极电阻不受侧墙高度改变的影响,频率性能不变;侧墙宽度增加,频率性能降低. 关键词: SiGe 异质结双极化晶体管 沟槽型发射极 发射极电阻  相似文献   

6.
N–p–n InGaP/GaAs Dual-Emitter HPTs (DEHPTs) with and without extrinsic base surface passivation were fabricated to investigate the influence of the surface leakage on the device’s optical performance. There are four operating regions appearing in the output characteristics of DEHPTs under illumination: negative-saturation, negative-tuning, positive-tuning and positive-saturation regions. The InGaP-passivated DEHPT (P-DEHPT), i.e. DEHPT with the extrinsic base surface passivated by InGaP, exhibits the maximum optical gains of 46.57, 46.86 and 47.39 while the non-passivated one (NP-DEHPT) shows ones of 32.02, 33.55 and 33.57 for optical powers of 8.62, 13.2 and 17.5 μW, respectively. However, the NP-DEHPT exhibits the larger peak gain-tuning efficiencies of 37.35, 41.03 and 44.10 compared to 12.76, 13.72 and 16.01 V −1 for the P-DEHPT for optical powers of 8.62, 13.2 and 17.5 μW, respectively. The better tuning efficiency makes the NP-DEHPT a possible low optical power optoelectronic application.  相似文献   

7.
This paper reports on the fabrication and characterization of InGaP/GaAs/InGaP δ-doped double heterojunction bipolar transistors (δ-DHBTs) with an InGaP passivation layer. Effects of passivation layer thickness on the performance of the studied devices were investigated. Various passivation layer thicknesses (1000Å to 0Å at a rate of −200Å) were employed in the device fabrication. Experimental findings show that both collector current and current gain are enhanced at fixed base currents when a 400   600-Å thick InGaP passivation layer is used. We obtained current gains of 350 and 280 at a base current of 100 μÅ for δ-DHBTs with a 400-Å thick InGaP passivation layer and without one, respectively. Furthermore, all devices exhibit a collector current saturation voltage (knee voltage) of less than 2.5 V. A control DHBT without a doping spike at the B–C heterointerface has a knee voltage of 3.5 V. At the same time, its current gains as a function of collector current are strongly dependent on the B–C reverse voltage. These high current gains with small knee voltages obtained in improved δ-DHBTs suggested that both the E–B and the B–C potential spikes are eliminated by δ-doped spikes.  相似文献   

8.
The fabrication process dependent effects on single event effects(SEEs) are investigated in a commercial silicon–germanium heterojunction bipolar transistor(SiGe HBT) using three-dimensional(3D) TCAD simulations. The influences of device structure and doping concentration on SEEs are discussed via analysis of current transient and charge collection induced by ions strike. The results show that the SEEs representation of current transient is different from representation of the charge collection for the same process parameters. To be specific, the area of C/S junction is the key parameter that affects charge collection of SEE. Both current transient and charge collection are dependent on the doping of collector and substrate. The base doping slightly influences transient currents of base, emitter, and collector terminals. However, the SEEs of SiGe HBT are hardly affected by the doping of epitaxial base and the content of Ge.  相似文献   

9.
赵彦晓  张万荣  黄鑫  谢红云  金冬月  付强 《中国物理 B》2016,25(3):38501-038501
The effect of lateral structure parameters of transistors including emitter width, emitter length, and emitter stripe number on the performance parameters of the active inductor(AI), such as the effective inductance Ls, quality factor Q,and self-resonant frequency ω_0 is analyzed based on 0.35-μm Si Ge Bi CMOS process. The simulation results show that for AI operated under fixed current density JC, the HBT lateral structure parameters have significant effect on Ls but little influence on Q and ω_0, and the larger Ls can be realized by the narrow, short emitter stripe and few emitter stripes of Si Ge HBTs. On the other hand, for AI with fixed HBT size, smaller JCis beneficial for AI to obtain larger Ls, but with a cost of smaller Q and ω_0. In addition, under the fixed collector current IC, the larger the size of HBT is, the larger Ls becomes, but the smaller Q and ω_0 become. The obtained results provide a reference for selecting geometry of transistors and operational condition in the design of active inductors.  相似文献   

10.
刘静  郭飞  高勇 《物理学报》2014,63(4):48501-048501
提出一种超结硅锗碳异质结双极晶体管(SiGeC HBT)新结构.详细分析了新结构中SiGeC基区和超结结构的引入对器件性能的影响,并对其电流输运机制进行研究.基于SiGeC/Si异质结技术,新结构器件的高频特性优良;同时超结结构的存在,在集电区内部水平方向和垂直方向都建立了电场,二维方向上的电场分布相互作用大大提高了新结构器件的耐压能力.结果表明:超结SiGeC HBT与普通结构SiGeC HBT相比,击穿电压提高了48.8%;更重要的是SiGeC HBT器件中超结结构的引入,不会改变器件高电流增益、高频率特性的优点;新结构器件与相同结构参数的Si双极晶体管相比,电流增益提高了10.7倍,截止频率和最高震荡频率也得到了大幅度改善,很好地实现了高电流增益、高频率特性和高击穿电压三者之间的折中.对超结区域的柱区层数和宽度进行优化设计,随着柱区层数的增多,击穿电压显著增大,电流增益有所提高,截止频率和最高震荡频率减低,但幅度很小.综合考虑认为超结区域采用pnpn四层结构是合理的.  相似文献   

11.
An InP/InGaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT) has been fabricated and demonstrated. The influence of the superlattice and emitter thickness on the device characteristics is studied. The insertion of the superlattice and a well-designed emitter improve the characteristics of the SE-RTBT. Common-emitter current gains up to 170 and 54 are obtained for the studied devices with emitter thicknesses of 800 Å and 150 Å, respectively. Based on the specified structure, the lower offset voltage and saturation voltage (   1.5 V) are obtained. Experimentally, the device with a 5-period superlattice and an emitter thickness of 800 Å provides higher dc performance and stable temperature-dependent characteristics.  相似文献   

12.
《Current Applied Physics》2014,14(8):1099-1104
We investigate the effects of perhydropolysilazane spin-on-dielectric (SOD) buffer layer adopted prior to Si3N4 passivation on the dc drain current level and degradation after the electrical stress in the AlGaN-GaN high electron mobility transistors (HEMTs). The SOD-buffered HEMTs show ∼1.6 times greater drain current densities (∼257 mA/mm) than those of the devices with conventional-Si3N4 passivations (∼155 mA/mm). After the hot electron stresses (step-wise and constant) applied to the devices, it is also found that the SOD-buffered structure produces greatly improved device reliability in terms of the dc current collapse (15% for step-stress and constant stress) compared to the conventional structure (25% for each case). We propose that the enhancement of SOD-buffered structure in dc current collapse is due to the reduction in surface state density at the passivation interface and the suppressed electron trapping.  相似文献   

13.
Future heterojunction InAs/GaSb superlattice (SL) detector devices in the long-wavelength infrared regime (LWIR, 8–12 μm) require an accurate bandstructure model and a successful surface passivation. In this study, we have validated the superlattice empirical pseudopotential method developed by Dente and Tilton over a wide range of bandgap energies. Furthermore, dark current data for a novel dielectric surface passivation for LWIR devices is presented. Next, we present a technique for high-resolution, full-wafer mapping of etch pit densities on commercial (1 0 0) GaSb substrates, which allows to study the local correlation between threading dislocations in the substrate and the electro-optical pixel performance. Finally, recent performance data for 384 × 288 dual-color InAs/GaSb superlattice imagers for the mid-wavelength infrared (MWR, 3–5 μm) is given.  相似文献   

14.
The surface effects, the (NH4)2S and low-temperature-deposited SiNx passivations of InP-based heterostructure bipolar transistors (HBTs) have been investigated. The surface recombination current of InP-based HBTs is related to the base structures. The (NH4)2S treatment for InGaAs and InP removes the natural oxide layer and results in sulfur-bonded surfaces. This can create surface-recombination-free InP-based HBTs. Degradation is found when the HBTs were exposed to air for 10 days. The low-temperature-deposited SiNx passivation of InGaAs/InP HBTs causes a drastic decrease in the base current and a significant increase in the current gain. The improvement in the HBT performance is attributed to the low deposition temperature and the effect of N2 plasma treatment in the initial deposition process. The SiNx passivation is found to be stable. S/SiNx passivation of InGaAs/InP HBTs results in a decrease in the base current and an increase in the current gain. The annealing process can cause the base current to decrease further and the current gain increase.  相似文献   

15.
最近,旋涂法制备的钙钛矿/平面硅异质结高效叠层太阳电池引起人们广泛关注,主要原因是相比于绒面硅衬底制备的钙钛矿/硅叠层太阳电池,其制备工艺简单、制备成本低且效率高.对于平面a-Si:H/c-Si异质结电池, a-Si:H/c-Si界面的良好钝化是获得高转换效率的关键,进而决定了钙钛矿/硅异质结叠层太阳电池的性能.本文主要从硅片表面处理、a-Si:H钝化层和P型发射极等方面展开研究,通过对硅片表面的氢氟酸(HF)浸泡时间和氢等离子体预处理气体流量、a-Si:H钝化层沉积参数、钝化层与P型发射极(I/P)界面富氢等离子体处理的综合调控,获得了相应的优化工艺参数.对比研究了p-a-Si:H和p-nc-Si:H两种缓冲层材料对I/P界面的影响,其中高电导、宽带隙的p-nc-Si:H缓冲层既能够降低I/P界面的缺陷态,又可以增强P型发射层的暗电导率,提高了前表面场效应钝化效果.通过上述优化,制备出最佳的P-type emitter layer/aSi:H(i)/c-Si/a-Si:H(i)/N-type layer (inip)结构样品的少子寿命与implied-Voc分别达到2855μs和709 mV,表现出良好的钝化效果.应用于平面a-Si:H/c-Si异质结太阳电池,转换效率达到18.76%,其中开路电压达到681.5 mV,相对于未优化的电池提升了34.3 mV.将上述平面a-Si:H/c-Si异质结太阳电池作为底电池,对应的钙钛矿/硅异质结叠层太阳电池的开路电压达到1780 mV,转换效率达到21.24%,证明了上述工艺优化能够有效地改善叠层太阳电池中的硅异质结底电池的钝化及电池性能.  相似文献   

16.
The electroluminescence in the range of 3–4.5 μm and 6–10 μm from a Sb-based type II interband quantum cascade structure is reported. We measured the light emission from the top surface of the LED device with different grating structures. We used different etch depths for the grating formation. The light–current–voltage (LIV) characteristics measured at both room and cryogenic temperatures show that the device with 45° angle grating and 1.0 μm deep etch onto the GaSb surface has the highest emission power.  相似文献   

17.
The HF treatment removes the native oxide and lays behind the dangling bonds over the Si surface which causes the increment in density of interface traps (Dit) through the direct deposition of high-k dielectric on Si. Here, we propose the facile method for reduction of interface traps and improvement in barrier height with the (NH4)2S treatment on Al2O3/Si interfaces, which can be used as the base for the non-volatile memory device. The AFM was used to optimize the treatment time and surface properties, while XPS measurements were carried out to study the interface and extract the barrier height (ΦB). The short period of 20 s treatment shows the improvement in the barrier height (1.02 eV), while the one order reduction in the Dit (0.84 × 1012 cm2/eV) of sulfur passivated Al/Al2O3/Si MOS device. The results indicate the favorable passivation of the dangling bonds over the Si surfaces covered by sulfur atoms.  相似文献   

18.
An efficient red-light-emitting device using a new host material (DPF) and a red dopant (DCJTB) with a configuration of ITO/NPB (50 nm)/DCJTB:DPF (2%, 10 nm)/TPBI (30 nm)/LiF (0.5 nm)/Mg:Ag has been fabricated and investigated. The red OLED yields a brightness of 9270 cd/m2 at 10 V, a maximum current efficiency of 4.2 cd/A and a maximum power efficiency of 3.9 lm/W. Using DPF as host material, the performance is much better than that of a prototypical Alq3-based device, which has a maximum efficiency of 1.9 cd/A and 0.6 lm/W. The performance is even comparable with red OLEDs using an assist dopant or a cohost emitter system. Results of this work indicate that DPF is a promising host material for red OLEDs with high efficiency and simple device structure.  相似文献   

19.
ZnO nanorods with different morphologies were grown by changing the temperature of the process using the thermal vapor deposition method without a catalyst. The X-ray diffraction pattern of these nanorods showed a single-crystalline wurtzite structure and a c-axis orientation. The turn-on fields of the pencil-like and normal ZnO nanorods were 1.7 V/μm and 2.2 V/μm at a current density of 0.1 μA/cm2, and the emission current density from the ZnO nanorods reached 1 mA/cm2 at bias fields of 5.1 V/μm and 7.5 V/μm, respectively. The results indicated that ZnO nanorods could give sufficient brightness as a field emitter in a flat panel display.  相似文献   

20.
Electron emission characteristics of Al-AlN granular films   总被引:1,自引:0,他引:1  
An electron conduction emitter of Al-AlN granular films was proposed for surface conduction electron emission device in this paper. The Al-AlN granular films with thickness of 30 nm were prepared between two co-planar electrodes with gap of 10 μm by magnetron sputtering. After electroforming the Al-AlN granular films, the films’ structure could be recovered by applying the periodic device voltage (Vf). Stable and uniform electron emission was observed with turn-on voltage of 5.3 V and threshold voltage of 9 V. The emitter emission current (Ie) of 4.84 μA for 36 cells was obtained with the anode voltage of 2.5 kV and the device voltage of 12 V. In addition, Fowler-Nordheim plots for Ie-Vf properties showed that the electron emission mechanism should be field emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号