首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
In-doped Ga2O3 zigzag-shaped nanowires and undoped Ga2O3 nanowires have been synthesized on Si substrate by thermal evaporation of mixed powders of Ga, In2O3 and graphite at 1000 °C without using any catalyst via a vapor-solid growth mechanism. The morphologies and microstructures of the products were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and photoluminescence spectroscopy (PL). The nanowires range from 100 nm to several hundreds of nanometers in diameter and several tens of micrometers in length. A broad emission band from 400 to 700 nm is obtained in the PL spectrum of these nanowires at room temperature. There are two blue-emission peaks centering at 450 and 500 nm, which originate from the oxygen vacancies, gallium vacancies and gallium-oxygen vacancy pairs.  相似文献   

2.
We have synthesized monoclinic gallium oxide (βGa2O3) nanowires on Au-coated Si substrates by a reaction of a trimethylgallium and oxygen mixture. The βGa2O3 nanowires became progressively thinner from bottom to top, with diameters ranging from 10 to 200 nm and lengths of several micrometers. We found that Au-containing nanoparticles were attached to the tips of the βGa2O3 nanowires and thus the nanowire growth could be a vapor–liquid–solid process .PACS 81.07.-b; 81.15.Gh  相似文献   

3.
This paper reports that/3-Ga2O3 nanorods have been synthesized by ammoniating Ga2O3 films on a V middle layer deposited on Si(111) substrates. The synthesized nanorods were confirmed as monoclinic Ga2O3 by x-ray diffraction,Fourier transform infrared spectra. Scanning electron microscopy and transmission electron microscopy reveal that the grown β-Ga2O3 nanorods have a smooth and clean surface with diameters ranging from 100 nm to 200 nm and lengths typically up to 2μm. High resolution TEM and selected-area electron diffraction shows that the nanorods are pure monoclinic Ga2O3 single crystal. The photoluminescence spectrum indicates that the Ga2O3 nanorods have a good emission property. The growth mechanism is discussed briefly.  相似文献   

4.
In an effort to obtain one-dimensional core/shell nanostructures, thermal oxidation behavior of GaN nanowires in O2 with N2 ambients was investigated by x-ray diffraction, transmission electron microscopy, and x-ray photoelectron spectroscopy. Crystallinity and chemical bonding states of the oxidized surface in the GaN nanowires were strongly dependent on the oxidation temperature. Chemical oxidation reaction occurred upon increasing the temperature, accompanied by the formation of an amorphous Ga2O3 layer at the GaN nanowire surface at 900 °C. The XPS analyses provided further evidence supporting the change in the chemical bonding states with increasing oxidation temperature.  相似文献   

5.
We review our current progress on semiconductor nanowires of β-Ga2O3, Si and GaN. These nanowires were grown using both vapor–solid (VS) and vapor–liquid–solid (VLS) mechanisms. Using transmission electron microscopy (TEM) we studied their morphological, compositional and structural characteristics. Here we survey the general morphologies, growth directions and a variety of defect structures found in our samples. We also outline a method to determine the nanowire growth direction using TEM, and present an overview of device fabrication and assembly methods developed using these nanowires. PACS 61.14.-x; 81.07.-b; 61.14.Lj; 81.05.-t  相似文献   

6.
We report a facile synthesis of ZnO/Fe2O3 heterostructures based on the hydrolysis of FeCl3 in the presence of ZnO nanoparticles. The material structure, composition, and its optical properties have been examined by means of transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and diffuse reflectance UV–visible spectroscopy. Results obtained show that 2.9 nm-sized Fe2O3 nanoparticles produced assemble with ZnO to form ZnO/Fe2O3 heterostructures. We have evaluated the photodegradation performances of ZnO/Fe2O3 materials using salicylic acid under UV-light. ZnO/Fe2O3 heterostructures exhibited enhanced photocatalytic capabilities than commercial ZnO due to the effective electron/hole separation at the interfaces of ZnO/Fe2O3 allowing the enhanced hydroxyl and superoxide radicals production from the heterostructure.  相似文献   

7.
Single crystalline Ba6Mn24O48 nanoribbons with diameters ranging from one hundred nanometers to a few hundred nanometers and length up to tens of microns are synthesized via a facile molten salt method. These nanoribbons are characterized by a range of methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). The magnetic properties of Ba6Mn24O48 nanoribbons are investigated by the zero-field-cooled (ZFC), field-cooled (FC) magnetization, and ac susceptibility. Upon cooling, we find the reentrant spin glass (RSG) behavior in these nanoribbons, i.e., paramagnetic (PM), antiferromagnetic (AFM), and spin glass (SG). The RSG behavior might be due to the surface spin disorder, geometrical frustration and Mn3+/Mn4+ mixture in Ba6Mn24O48 nanoribbons.  相似文献   

8.
Thin Ga2O3 films were grown on Si (100) using trimethylgallium (TMG) and oxygen as the precursors through plasma-enhanced atomic layer deposition. The depositions were made over a temperature range of 80–250?°C with a growth per cycle of around 0.07 nm/cycle. Surface self-saturating growth was obtained with TMG pulse time ≥20?ms?at a temperature of 150?°C. The root mean square surface roughness of the obtained Ga2O3 films increased from 0.1?nm to 0.3?nm with increasing the growth temperature. Moreover, the x-ray photoelectron spectroscopy analysis indicated that the obtained film was Ga-rich with the chemical oxidation states Ga3+ and Ga1+, and no carbon contamination was detected in the films after Ar+ sputtering. The electron density of films measured by x-ray reflectivity varied with the growth temperature, increasing from 4.72 to 5.80?g/cm3. The transmittance of Ga2O3 film deposited on a quartz substrate was obtained through ultraviolet visible (UV–Vis) spectroscopy. An obvious absorption in the deep UV region was demonstrated with a wide band gap of 4.6–4.8?eV. The spectroscopic ellipsometry analysis indicated that the average refractive index of the Ga2O3 film was 1.91?at 632.8?nm and increased with the growth temperature due to the dense structure of the films. Finally, the I-V and C-V characteristics proved that the Ga2O3 films prepared in this work had a low leakage current of 7.2?×?10?11 A/cm2 at 1.0?MV/cm and a high permittivity of 11.9, suitable to be gate dielectric.  相似文献   

9.
Monoclinic gallium oxide (β-Ga2O3) nanowires with lengths of tens of micrometers and diameters ranging from 100 to 250 nm are synthesized using simple physical evaporation based on vapor–liquid–solid (VLS) mechanism. The as-synthesized straight β-Ga2O3 nanowires show excellent diameter uniformity and sidewall smoothness, making them suitable for optical wave-guiding. Light from a fiber taper is launched into the nanowire by means of evanescent coupling. Measured propagation loss of the nanowire at 633 nm wavelength is on the order of 10 dB/mm. Favorable mechanical strength of these nanowires for elastic bending is also observed. Our results suggest that β-Ga2O3 nanowires are promising building blocks for micro- and nanophotonic circuits and devices.  相似文献   

10.
Single crystalline GaN nanoribbons were synthesized through nitriding Ga2O3 thin films deposited on sapphire (0001) substrates by radio frequency magnetron sputtering. The component and structure of nanoribbons were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The flat and smooth ribbon-like nanostructures are high quality single crystalline hexagonal wurtzite GaN. The thickness and width-to-thickness ratio of the grown GaN nanoribbons are in the range of 8-15 nm and ∼5-10, respectively.  相似文献   

11.
NiFe2O4/SiO2 nanocomposites were prepared using a sol–gel method with the addition of 3-aminopropyltrimethoxysilane (APS). Different phases and morphologies of NiFe2O4/SiO2 nanocomposites were obtained when different amounts of APS were used. The structural properties of the products were examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Sheet-like morphology was observed at higher molar ratio of APS to NiFe2O4, while spherical NiFe2O4/SiO2 nanoparticles separated from each other were formed at lower molar ratio of APS to NiFe2O4. The magnetic properties of the nanocomposites were also investigated, indicating that the interparticle interactions exhibit strong dependence on the molar ratio of APS to NiFe2O4.  相似文献   

12.
The rhombohedral α- Ga1.2Fe0.8O3 ceramics have been synthesized by using a high pressure technique at a pressure of 5 GPa and a temperature of 800 °C from orthorhombic ε- Ga1.2Fe0.8O3 ceramics, which were identified to be isostructural with α- Fe2O3 and α- Ga2O3. The low temperature magnetism has been studied for α- Ga1.2Fe0.8O3, the saturation magnetization is at 5 K, and the Morin temperature has not been found. Moreover, it is most probable that the spin reorientation of α- Ga1.2Fe0.8O3 has been found at 50 K resulted from the change of magnetic dipole anisotropy and single-ion anisotropy with temperature.  相似文献   

13.
In this work, the influence of Lu2O3 doped on the dielectric and electrical properties of CaCu3Ti4O12 was reported. Lu2O3-doped CCTO was prepared by a conventional solid state technique using CuO, TiO2, and CaCO3 as starting materials. The samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM); dielectric measurements were measured in the 102 Hz–107 Hz frequency range at room temperature; and the nonlinear behavior of all samples was measured. The doping of Lu2O3 resulted in an increase in the dielectric constant of CCTO, but decreased the stability of the frequency dependence. Increasing concentrations of Lu2O3 resulted in decreasing nonlinear coefficients.  相似文献   

14.
Germanium dioxide (GeO2) nanowires have been synthesized by means of the simple evaporation of solid Ge powders, without using metal catalysts. The nanowires, with a diameter of about 90–200 nm, were characterized using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM). The obtained GeO2 nanowires were crystalline with a hexagonal structure. The growth mechanism was discussed with respect to the vapor–solid process. The photoluminescence measurement revealed two emission peaks at about 2.45 eV and 2.91 eV at room temperature, opening up a route to potential applications in future optoelectronic nanodevices. Raman measurement of as-synthesized GeO2 nanowires was made at room temperature.  相似文献   

15.
Submicron-sized SrFe12−xAlxO19 (x=1.3) was formed in glass-ceramic matrix using controlled thermocrystallization of the SrO–Fe2O3–Al2O3–B2O3 glass and the hexaferrite powder was obtained by removing the matrix phases. The samples were characterized by X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray (EDX) analysis and magnetization measurements. The glass-ceramic material exhibits very high coercivity value up to 10.18 kOe which approaches a theoretically estimated maximum value for the compound. The hexaferrite powder consists of well faceted single crystals, which adopt the shape of a truncated hexagonal bipyramid. The powder saturation magnetization value is close to the theoretically estimated one for bulk material. Crystal structure of the powder was refined by Rietveld method and distribution of Al atoms on Fe sites was determined. Al atoms occupy 41% of 2a sites, 14% of 12k sites and 5% of 4e(1/2) sites, while 4f sites are not affected.  相似文献   

16.
Magnetic composites were obtained in the system SrO–Fe2O3–B2O3 by oxide glass heat treatment at 600–950 °C. Samples of the composites were investigated using XRD analysis, magnetic measurements, electron microcopy, and thermal analysis. It was shown that chemical composition of the precursor oxide glass and thermal treatment conditions influenced on the SrFe12O19 particles morphology and magnetic properties. The composites and powders were obtained containing hexaferrite as single domain platelet crystals or polycrystalline aggregates with a coercive force up to 6300 Oe in the former case and 4200 Oe in the latter case.  相似文献   

17.
The deposition of gadolinia-doped ceria (CGO, Gd0.1Ce0.9O1.95) and LaGaO3-based perovskite oxides (LSGM, La0.9Sr0.1Ga0.8Mg0.2O2.87) thin films on a stainless steel substrate was studied using the electrostatic spray deposition (EDS) technique. The effect of process conditions, such as deposition temperature, deposition time and liquid flow rate, on the surface morphology and microstructure of thin films was examined with scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). The deposited CGO films with a highly porous and three-dimensional interconnected structure were obtained at a liquid flow rate of 0.5 ml/h, a deposition temperature of 503 K and a deposition time ranging from 0.5 to 1 h. On the other hand, the deposited LSGM thin films with porous microstructure were also obtained at the deposition time of 1 h, the deposition temperature of 533 K and the liquid flow rate of 0.5 ml/h. The deposited CGO and LSGM thin films were amorphous at the used deposition temperature. Subsequently, the samples were annealed at 1173 K for 2 h and the desired crystal structures were obtained. The chemical analysis of the thin films was investigated by energy dispersive X-ray (EDX) analysis. The observed chemical compositions of the samples were in a fair agreement with those of the starting solutions.  相似文献   

18.
In this paper, the author presents the results of measurements of the low-temperature and angular dependences of the ESR spectra of Eu2+ centers in defect Ga2S3 single crystals in the temperature range 8–29 K and for 0–180° orientations of the static magnetic field. The electron structure of impurity 151Eu atoms in Ga2S3:Eu single crystals has been studied by using the ESR method at different doping proportions of Eu atoms. Ga2S3 single crystals were grown from the melt using the Bridgman method. The Eu concentration was determined by atomic absorption analysis and X–ray fluorescence analysis (XRFA). By investigation on the ESR spectra, the author has first determined the values of charge states for Eu, which have turned out to be a Eu2+(4f7) ion with spin S=7/2, g=4.18±0.02 and concentration of the states of Eu N=6.3×1014 cm−3.  相似文献   

19.
Zinc oxide/erbium oxide core/shell nanowires are of great potential value to optoelectronics because of the possible demonstration of laser emission in the 1.5 μm range. In this paper we present a convenient technique to obtain structures of this composition. ZnO core nanowires were first obtained by a vapor–liquid–solid (VLS) method using gold as a catalyst. ZnO nanowires ranging from 50 to 100 nm in width were grown on the substrates. Erbium was incorporated into these nanowires by their exposure to Er(tmhd)3 at elevated temperatures. After annealing at 700 C in air, the nanowires presented 1.54 μm emission when excited by any of the lines of an Ar+ laser. An investigation of nanowire structure by HRTEM indicates that indeed the cores consist of hexagonal ZnO grown in the 001 direction while the surface contains randomly oriented Er2O3 nanoparticles. EXAFS analysis reveals that the Er atoms possess a sixfold oxygen coordination environment, almost identical to that of Er2O3. Taken collectively, these data suggest that the overall architectures of these nanowires are discrete layered ZnO/ Er2O3 core/shell structures whereby erbium atoms are not incorporated into the ZnO core geometry.  相似文献   

20.
We report the formation of homogeneous and stable V2O3 nanocrystals, directly from V2O5 thin films, at 600 °C, as observed by using in situ electron microscopy experiments. Thermally-induced reduction of V2O5 thin films in vacuum is remarkably different when compared to reduction of V2O5 single crystals and results in the formation of nanophase V2O3. Thermally grown V2O3 nanocrystals exhibit hexagon or square shape and are stable at higher temperature as well as room temperature. The formation of stable nanocrystals through the reduction process in a non-chemical environment (vacuum) could provide a basis for understanding the complex processes of vanadium oxide phase transitions and for controlling the chemical processes to produce oxide nanocrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号