首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within the framework of effective-mass approximation, the binding energy of a hydrogenic donor impurity in a zinc-blende (ZB) InGaN/GaN cylindrical quantum dot (QD) is investigated using a variational procedure. Numerical results show that the donor binding energy is highly dependent on impurity position and QD size. The donor binding energy Eb is largest when the impurity is located at the center of the QD. The donor binding energy is decreased when the dot height (radius) is increased.  相似文献   

2.
Based on the effective-mass approximation, hydrostatic pressure effect on the donor binding energy in zinc blende (ZB) InGaN/GaN asymmetric multiple quantum wells (AMQWs) is investigated variationally. Numerical results show that the hydrostatic pressure increases the donor binding energy for any impurity position. Moreover, the hydrostatic pressure effect is more noticeable if the impurity is localized inside the wide well of the AMQWs. For any hydrostatic pressure, the donor binding energy is distributed asymmetrically with respect to the center of the AMQWs. In particular, the donor binding energy of impurity located at the center of the wide well of the AMQWs is insensitive to the increment of the inter-well barrier width if the inter-well barrier width is large.  相似文献   

3.
Within the framework of effective-mass approximation, the hydrostatic pressure effects on the donor binding energy of a hydrogenic impurity in InAs/GaAs self-assembled quantum dot(QD) are investigated by means of a variational method. Numerical results show that the donor binding energy increases when the hydrostatic pressure increases for any impurity position and QD size. Moreover, the hydrostatic pressure has a remarkable influence on the donor binding energy for small QD. Realistic cases, including the impurity in the QD and the surrounding barrier, are considered.  相似文献   

4.
Within the framework of effective-mass approximation, exciton states confined in zinc-blende(ZB) InGaN/GaN quantum dot(QD) are investigated by means of a variational approach, considering finite band offsets. The ground-state exciton binding energy and the interband emission energy are investigated as functions of QD structural parameters in detail. Numerical results show clearly that both the QD size and In content of InGaN have a significant influence on the exciton states and interband optical transitions in the ZB InGaN/GaN QD.  相似文献   

5.
考虑应变,在有效质量、有限高势垒近似下,变分研究了纤锌矿GaN/AlxGa1-xN柱形量子点中类氢施主杂质态结合能随流体静压力、杂质位置及量子点结构参数(量子点高度、半径、Al含量)的变化关系.结果表明,类氢施主杂质态结合能随流体静压力增大而增大,且在量子点尺寸较小时,流体静压力对杂质态结合能的影响更为显著.受流体静压力的影响,杂质态结合能随量子点高度、半径的增加而单调减少,且变化趋势加剧;随Al含量增加而增大的趋势变缓.无论是否施加流体静压力,随着类氢施主杂质从量子点左界面沿材料生长方向移至右界面,杂质态结合能在量子点的右半部分存在一极大值.流体静压力使得极大值点向量子点中心偏移.  相似文献   

6.
The binding energy of a hydrogenic donor impurity in zinc-blende (ZB) InGaN quantum dot (QD) is calculated in the framework of effective-mass envelope-function theory using the plane wave basis. It is shown that the donor binding energy is highly dependent on the impurity position, QD size and the external electric field. The symmetry of the electron probability distribution is broken and the maximum of the donor binding energy is shifted from the centre of QD in the presence of the external electric field. The degenerating energy levels for symmetrical positions with respect to the centre of QD are split. The splitting increases with the increase of QD height while the splitting increases up to a maximum value and then decreases with the increase of QD radius.  相似文献   

7.
Based on the effective-mass approximation, the donor binding energy in a cylindrical zinc-blende (ZB) symmetric InGaN/GaN coupled quantum dots (QDs) is investigated variationally in the presence of an applied electric field. Numerical results show that the ground-state donor binding energy is highly dependent on the impurity positions, coupled QDs structure parameters and applied electric field. The applied electric field induces an asymmetric distribution of the donor binding energy with respect to the center of the coupled QDs. When the impurity is located at the center of the right dot, the donor binding energy has a maximum value with increasing the dot height. Moreover, the donor binding energy is the largest and insensitive to the large applied electric field (F?400 kV/cm) when the impurity is located at the center of the right dot in ZB symmetric In0.1Ga0.9N/GaN coupled QDs. In addition, if the impurity is located inside the right dot, the donor binding energy is insensitive to large middle barrier width (Lmb?2.5 nm) of ZB symmetric In0.1Ga0.9N/GaN coupled QDs.  相似文献   

8.
闪锌矿GaN量子点中类氢杂质态的束缚能   总被引:2,自引:1,他引:1       下载免费PDF全文
在有效质量近似下,用变分法研究了闪锌矿GaN/AlxGa1-xN单量子点中的类氢杂质态。结果表明量子点中的杂质位置和量子点结构参数(量子点高度H、半径R及Al含量x)对施主束缚能有很大的影响。当杂质位于量子点中心时,施主束缚能 有最大值。此外,施主束缚能 随着量子点高度H(半径 )的增大而减小,随着量子点中Al含量x的增大而增大。  相似文献   

9.
The effect of electric field on exciton states and optical properties in zinc-blende (ZB) InGaN/GaN quantum dot (QD) are investigated theoretically in the framework of effective-mass envelop function theory. Numerical results show that the electric field leads to a remarkable reduction of the ground-state exciton binding energy, interband transition energy, oscillator strength and linear optical susceptibility in InGaN/GaN QD. It is also found that the electric field effects on exciton states and optical properties are much more obvious in QD with large size. Moreover, the ground-state exciton binding energy and oscillator strength are more sensitive to the variation of indium composition in InGaN/GaN QD with small indium composition. Some numerical results are in agreement with the experimental measurements.  相似文献   

10.
11.
纤锌矿GaN柱形量子点中类氢施主杂质态   总被引:4,自引:3,他引:1       下载免费PDF全文
在有效质量近似和变分原理的基础上,选取含两个变分参数的波函数,研究了纤锌矿结构的GaN/AlxGa1-xN单量子点中类氢施主杂质体系的结合能随量子点(QD)尺寸以及杂质在量子点中位置的变化,并与以前使用不同尝试波函数的计算结果进行了比较。结果表明:由我们选取的两变分参数波函数得到的结果与前人选取的两变分参数波函数得到的结果相比有所改进,而与选取一个变分参数波函数得到的结果一致。同时我们还计算了体系的维里定理值随量子点半径的变化情况,所得结果与前人工作结果一致,说明本文选取的两变分参数波函数能很好地描述柱形量子点中施主杂质态的运动。  相似文献   

12.
The binding energy of a hydrogenic donor impurity in a wurtzite (WZ) GaN/AlGaN quantum dot (QD) is investigated, including the strong built-in electric field effect due to the spontaneous and piezoelectric polarizations. Numerical results show that the strong built-in electric field induces an asymmetrical distribution of the donor binding energy with respect to the center of the QD. The donor binding energy is insensitive to dot height when the impurity is located at the right boundary of the QD with large dot height.  相似文献   

13.
Based on the effective mass approximation, the donor bound exciton states in a wurtzite (WZ) GaN/AlGaN quantum dot (QD) are investigated by means of a variational method, including the strong built-in electric field effect due to the spontaneous and piezoelectric polarizations. Numerical results show that the donor bound exciton binding energy is highly dependent on the impurity position and QD size. In particular, we find that the donor bound exciton binding energy is insensitive to dot height when the impurity is located at the right boundary of the WZ GaN/AlGaN QD with large dot height.  相似文献   

14.
Based on the effective-mass approximation, we have calculated the donor binding energy of a hydrogenic impurity in zinc-blende (ZB) GaN/AlN coupled quantum dots (QDs) using a variational method. Numerical results show that the donor binding energy is highly dependent on the impurity position and coupled QDs structural parameters. The donor binding energy is largest when the impurity is located at the center of quantum dot. When the impurity is located at the interdot barrier edge, the donor binding energy has a minimum value with increasing the interdot barrier width.  相似文献   

15.
Using the effective mass and parabolic band approximations and a variational procedure we have calculated the combined effects of intense laser radiation, hydrostatic pressure, and applied electric field on shallow-donor impurity confined in cylindrical-shaped single and double GaAs-Ga1−xAlxAs QD. Several impurity positions and inputs of the heterostructure dimensions, hydrostatic pressure, and applied electric field have been considered. The laser effects have been introduced by a perturbative scheme in which the Coulomb and the barrier potentials are modified to obtain dressed potentials. Our findings suggest that (1) for on-center impurities in single QD the binding energy is a decreasing function of the dressing parameter and for small dot dimensions of the structures (lengths and radius) the binding energy is more sensitive to the dressing parameter, (2) the binding energy is an increasing/decreasing function of the hydrostatic pressure/applied electric field, (3) the effects of the intense laser field and applied electric field on the binding energy are dominant over the hydrostatic pressure effects, (4) in vertically coupled QD the binding energy for donor impurity located in the barrier region is smaller than for impurities in the well regions and can be strongly modified by the laser radiation, and finally (5) in asymmetrical double QD heterostructures the binding energy as a function of the impurity positions follows a similar behavior to the observed for the amplitude of probability of the noncorrelated electron wave function.  相似文献   

16.
Within the framework of effective-mass approximation, the effects of a laser field on the ground-state donor binding energy in zinc-blende (ZB) GaN/AlGaN quantum well (QW) have been investigated variationally. Numerical results show that the donor binding energy is highly dependent on QW structure parameters and Al composition in ZB GaN/AlGaN QW. The laser field effects are more noticeable on the donor binding energy of an impurity localized inside the QW with small well width and low Al composition. However, for the impurity located in the vicinity of the well edge of the QW, the donor binding energy is insensible to the variation of Al composition, well width and laser field intensity in ZB GaN/AlGaN QW. In particular, the competition effects between laser field and quantum confinement on impurity states have also been investigated in this paper.  相似文献   

17.
The effects of hydrostatic pressure and size quantization on the binding energies of a hydrogen-like donor impurity in cylindrical GaAs quantum dot (QD) with Morse confining potential are studied using the variational method and effective-mass approximation. In the cylindrical QD, the effect of hydrostatic pressure on the binding energy of electron has been investigated and it has been found that the application of the hydrostatic pressure leads to the blue shift. The dependence of the absorption edge on geometrical parameters of cylindrical QD is obtained. Selection rules are revealed for transitions between levels with different quantum numbers. It is shown that for the radial quantum number, transitions are allowed between the levels with the same quantum numbers, and any transitions between different levels are allowed for the principal quantum number.  相似文献   

18.
Within the framework of effective mass approximation, the binding energy of a hydrogenic donor impurity in zinc-blende GaN/AlxGa1−xN spherical quantum dot (QD) is investigated using the plane wave basis. The results show that the binding energy is highly dependent on impurity position, QD size, Al content and external field. The binding energy is largest when the donor impurity is located at the centre of the QD and the binding energy of impurity is degenerate for symmetrical positions with respect to the centre of QD without the external electric field. The maximum of the donor binding energy is shifted from the centre of QD and the degenerating energy levels for symmetrical positions with respect to the centre of QD are split in the presence of the external electric field. The binding energy is more sensitive to the external electric field for the larger QD and lower Al content. In addition, the Stark shift of the binding energy is also calculated.  相似文献   

19.
In the present work, we have studied the effects of hydrostatic pressure, temperature and impurity position on the donor binding energy of a pyramid quantum dot. For this goal, using variational method, we have calculated the binding energy as a function of dot size for various impurity locations, different pressures and temperatures. According to the results, we have found that the binding energy increases when the pressure increases and it enhances as the temperature decreases. Our results show that these effects play an important and considerable role on the donor binding energy of a pyramid quantum dot.  相似文献   

20.
压力下GaN/Ga1-xAlxN量子点中杂质态的界面效应   总被引:1,自引:1,他引:0       下载免费PDF全文
张敏  闫祖威 《发光学报》2009,30(4):529-534
考虑界面处导带弯曲,流体静压力以及有效质量随量子点位置的依赖性,采用变分法以及简化相干势近似,研究了无限高势垒GaN/Ga1-xAlxN球形量子点中杂质态的界面效应,计算了杂质态结合能随量子点尺寸、电子面密度以及压力的变化关系。结果表明,结合能随压力的增大呈线性增加的趋势,有效质量位置的依赖性以及导带弯曲对结合能有不容忽视的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号