首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
静电纺丝法制备ZrO2纳米纤维   总被引:2,自引:0,他引:2  
纳米级ZrO:因具有高氧离子传导和高折射率而被广泛应用于催化剂、氧传感器、燃料电池以及对Cr(Ⅵ)污染的处理等方面.目前已成功地制备了ZrO2的纳米颗粒、纳米管及纳米薄膜等.但是,对于具有准一维结构的ZrO2纳米纤维的制备及性能研究尚未见报道.  相似文献   

2.
In this work, we evaluate the physical properties of nylon 6 nonwoven mats produced from solutions with formic acid. Nonwoven electrospun mats from various solutions with different concentration are examined regarding their morphology, pore size, surface area, and gas transport properties. Each nonwoven mat with average fiber diameters from 90 to 500 nm was prepared under controlled electrospinning process parameters. From the results, it was observed that the fiber diameter was strongly affected by the polymer concentration (polymer viscosity). In additional the results showed that the pore size, Brunauer-Emmett-Teller (BET) surface area, and gas transport property of electrospun nylon 6 nonwoven mats were affected by the fiber diameter.  相似文献   

3.
采用无卤法制备晶相可控的ZrO2纳米线. 通过静电纺丝法制备聚乙烯吡咯烷酮(PVP)与Zr(NO3)4的复合纤维; 再通过煅烧法在除去聚合物模板的同时制备ZrO2纳米线. 采用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 傅里叶变换红外光谱(FTIR)仪及热重差热联用热分析仪(DSC-TGA)对材料的晶相结构、 形貌及热稳定性进行表征. 通过改变煅烧温度, 可以实现ZrO2纳米材料形貌及晶相组成的调控.  相似文献   

4.
In this paper, we presented a simple and effective solution route to deposit Pt nanoparticles on electrospun In2O3 nanofibers for H2S gas detection. The morphology and chemical structure of the as-prepared samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS). The results showed that large quantities of In2O3 nanofibers with diameters about from 60 to 100 nm were obtained and the surface of them was decorated with Pt nanoparticles (5–10 nm in size). The In2O3 nanofibers decorated by Pt nanoparticles exhibited excellent gas sensing properties to H2S, such as high sensitivity, good selectivity and fast response at relatively low temperature.  相似文献   

5.
The applicative potentiality of the nanotechnologies emerges more and more in all fields of science, technology, and medicine. In this context, magnetic nanoparticles have been recently proposed as promising nanomaterials to eliminate, through minimally invasive treatments, small tumours. This work deals with the design and realization of electrospun hybrid membranes of Polycaprolactone (PCL) incorporating magnetic nanoparticles modified with the acid citric-based ligand. The nature of the ligand allows very effective compatibility between nanoparticles and hosting fibers, as deducible by the nanoparticles distribution along the fibers. Dimension and functionalization of the nanoparticles, together with the optimization of the electrospinning parameters allow obtaining highly homogeneous distribution in the diameter of the nanocharged fibers, which ranges between 500 nm and 3 μm. The anticancer activity of the optimized electrospun hybrid membranes has been analyzed toward two different melanoma cell lines: the low metastatic A375 and the high metastatic A2058, using the MTT assay. The formulated membrane exhibited a dose-dependent reduction toward both melanoma cells viability, without a decrease of activity compared to the unfunctionalized Fe3O4 nanoparticles. Promising results have been obtained also considering the antitumor activity of the hybrid Membranes toward uterine HeLa cells. Magnetic properties and structural and morphological characteristics of the functional membranes highlight very promising applications for tuning/enhancing the nanodelivery of drugs and chemotherapy assisted by electroporation technique.  相似文献   

6.
Antimony-based materials have become promising anodes within lithium-ion batteries(LIBs)due to their low cost and the high theoretical capacity.However,there is a potential to further enhance the electrochemical performance of such antimony-based materials.Herein,Sb2Se3@C nanofibers(Sb2Se3@CNFs)are designed and obtained via a novel electrospinning method.Upon electrochemically testing as an anode within LIBs,the Sb2Se3@CNFs(annealed at 600℃)delivers a remarkably good cycling performance of 625 mAh/g at 100 mA/g after 100 cycles.Moreover,it still remains at 490 mAh/g after 500 cycles with an applied current density of 1.0 A/g.The excellent performance of the Sb2 Se3@CNFs can be attributed to the fact that the N-doped C matrices not only remit the volume expansion of materials,but also enhance the electrical and ionic conductivity thusly increasing the lithium-ion diffusion.The obtained Sb2Se3@CNFs are promising anode for LIBs in the future.  相似文献   

7.
HeterojunctionFe_2O_3 nanoparticles(NPs), NiFe_2O_4 nanofibers(NFs), and CoFe_2O_4 NFs were synthesized by electrospinning and the subsequent thermal treatment processes. Characterization results indeed display the three-dimensional net-like textural structures of these as-electrospun spinel-type MFe_2O_4 NFs. The MFe_2O_4 NFs-based film configurations possess abundant micro/meso/macropores on their surface. These structures could afford more accessible transport channels for effective reduction of the mass transport resistance and improvement of the density of exposed catalytic active sites. All these advantages are responsible for the enhanced electro-catalytic performance of these MFe_2O_4 NFs in hydrazine oxidation. When used for hydrazine detection, CoFe_2O_4 NFs show the best catalytic efficiency.For example, the CoFe_2O_4 NFs possess a large sensitivity of 1327 mA cmà2(mmol Là1[à1in the linear range of 0.01 to 0.1 mmol Là1and 503 mA cmà2(mmol Là1)à1in the linear range of 0.1 to 11 mmol Là1, a response time of shorter than 3 s, good reproducibility and remarkable long-term stability. The superior catalytic efficiency, excellent stability, low cost, and ease of fabrication render CoFe_2O_4 NFs very promising materials in developing an electrochemical device that directly detects hydrazine.  相似文献   

8.
The regenerated silk fibroin dissolved in formic acid was electrospun into nanofiber mats. Structural characteristics of the spun as received and methanol and ethanol treated fibers were examined using the Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction. Mechanical properties and air permeability of the electrospun mats were also studied. IR spectroscopy and X-ray diffractometry showed random coil conformation and amorphous structure for as-spun fibers while typical FTIR spectra and X-ray diffractograms of β-sheet crystalline structure were recorded for the methanol and ethanol treated fibers. The mechanical properties of the mats were found to be dependent on fiber diameter. The mats containing fibers with smaller diameter had higher tensile strength but lower breaking strain. Methanol and ethanol treatment enhanced tensile strengths of the mats at the expenses of their breaking strain. Air permeability and pore size of the mats are strongly associated with diameter of the electrospun fibers.  相似文献   

9.
A new hexadentate, tripodal 8-hydroxyquinoline ligand (QH3) and its trivalent metal chelates (MQ, M=Al3+, Ga3+, In3+) with hemicage structures have been prepared and the electrochemical and photophysical properties systematically studied. The hemicage structure of the metal complexes was characterized by 1H NMR, indicating a pure facial geometry, in contrast to their uncaged cousins with 8-hydroxyquinoline (Mq3) and 3-methyl-8-hydroxyquinoline (M(3Meq)3), which all exist only as the meridional form in fluid solutions at room temperature. The photoluminescence quantum efficiency for the three hemicage complexes is 1.48, 1.79, and 1.26 times higher for AlQ, GaQ, and InQ, respectively, than their corresponding 3-methyl-8-hydroxyquinoline complexes, likely due to the rigidity of the ligand system, which can efficiently decrease the nonradiative decay of the excited states. The improved electrochemical stability of the hemicage complexes has been demonstrated by cyclic voltammetry, showing an increasingly reversible behavior from InQ to GaQ to AlQ (Ered=-2.15, -2.17, and -2.22 V vs Fc/Fc+ in DMSO). We infer that the degree of reversibility and redox potential result from the metal-ligand bond strength, which is largest in the case of aluminum.  相似文献   

10.
TiO2/g-C3N4 nanofibers with diameter of 100–200 nm were prepared by electrospinning method after calcination at high temperature, using polyvinylpyrrolidone (PVP), Melamine (C3H6N6), Ti(OC4H9)4 as raw materials. The composite nanofibers were characterized by XRD, FT-IR, SEM, UV–vis and PL respectively. The effects of different g-C3N4 contents on structure and photocatalytic degradation of the composite nanofibers were investigated. The results indicated that with increasing g-C3N4 content, the diameter of the composite fibers increased and the morphology changed from uniform structure to a nonuniform one, containing beads. The composite nanofibers displayed the best photocatalytic degradation on RhB, when the g-C3N4 content was 0.8 wt%. The degree of degradation was up to 99% at the optimal conditions of 40 min. The degradation activity of the composite nanofibers on RhB, MB and MO was found to be higher than that of the TiO2 nanofibers.  相似文献   

11.
《Arabian Journal of Chemistry》2020,13(11):7978-7989
This work presents a study of microwave absorption properties of PAni/Fe3O4/PVA nanofiber composites with different ratio of Fe3O4 nanoparticles. The morphology of the composites nanofibers study by Field Emission Scanning Electron Microscopes (FESEM) and Transmission Electron Microscope (TEM) showed that the low content of Fe3O4 nanoparticles presence in the composites nanofibers indicates very much uniform surface, in the composites nanofiber without many bends, but some bends develop at higher content of Fe3O4 nanoparticles as indicated in the TEM image. Image-J software was used to further investigate the diameter of the composites nanofiber and found to be in the range of 152 to 195 nm. The nanofiber composites show excellent electric and magnetic properties and therefore vary with the addition of Fe3O4 nanoparticles in the composites nanofiber. In addition the PAni/Fe3O4/PVA composites nanofibers were further characterized by X-ray diffraction spectra (XRD) and Four Transformation infrared spectra (FTIR). The XRD pattern shows the presence of PAni nanotubes containing Fe3O4 nanoparticles by indicating peaks at 23.4⁰ and 35.43⁰ which was further supported by FTIR analysis. Microwave vector network analyzers (MVNA) were used to estimate the microwave absorption properties of the composites nanofibers. The absorption parameters was found to be −6.4 dB at 12.9 GHz within the range of X-band microwave absorption frequency, this reflection loss is attributed to the multiple absorption mechanisms as a result of the improved of impedance matching between dielectric and magnetic loss of the absorbent materials demonstrating that these materials can be used as protective material for electromagnetic radiation.  相似文献   

12.
Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers were prepared by atmospheric plasma treatment and electrospinning. Atmospheric helium plasma treatment was first used to reduce the AgNO3 precursor in pre-electrospinning solutions into metallic silver nanoparticles, followed by electrospinning into continuous and smooth nanofibers with Ag nanoparticles embedded in the matrix. SEM, TEM, and EDX spectra were used to study the structure and surface elemental composition of the nanofibers. Silver nanoparticles, with diameters ranging between 3 and 6 nm, were found to be uniformly dispersed in the nanofiber matrix. The Ag/PAN nanofibers exhibited slow and long-lasting silver ion release, which provided robust antibacterial activity against both Gram-positive Bacillus cereus and Gram-negative Escherichia coli microorganisms.  相似文献   

13.
One-dimensional GdVO4:Ln3+ (Ln=Eu, Dy, Sm) nanofibers have been prepared by a combination method of sol-gel process and electrospinning technology. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL), quantum efficiency (QE), and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The XRD, FT-IR, and TG-DTA results show that GdVO4:Ln3+ nanofibers samples crystallize at 700 °C. SEM images indicate that the as prepared precursor fibers are smooth. After being calcined at 700 °C for 4 h, the fibers still maintain their fiberlike morphology with rough surface. TEM image further manifests that the GdVO4:Ln3+ nanofibers consist of nanoparticles. Under ultraviolet excitation and low-voltage electron beam excitation, GdVO4:Ln3+ phosphors showed their strong characteristic emission due to an efficient energy transfer from vanadate groups to dopants. The optimum doping concentration of Ln3+ in the GdVO4 nanofibers also has been investigated.  相似文献   

14.
Research on Chemical Intermediates - Ternary oxide powders based on titania, zirconia and silica have been synthesized by the sol–gel method. The characterization of the powders was performed...  相似文献   

15.
A series of 2,6-bis(ethenylsilyl)-4,4-diphenyldithienosilole derivatives containing silylene-spacer were prepared by platinum-catalyzed hydrosilylation reaction. All the hydrosilylation proceeded regio- and stereoselectively to give solely β-(E)-adducts. The 2,6-bis(ethenylsilyl)-4,4-diphenyldithienosilole derivatives exhibit intense fluorescence emission and high quantum yields. The shoulder band of 9 in the emission spectrum was explained the intramolecular charge transfer from the electron-donating group (dimethylaminostyryl group) to electron-accepting group (dithienosilole moiety). These optical data are in good agreement with the results of theoretical calculations of model compounds at the level of B3LYP/6-31G(d,p).  相似文献   

16.
Liu  Yi  Ma  Xiaoyan  Sun  Kun  Yang  Kaiqi  Chen  Fang 《Journal of Solid State Electrochemistry》2018,22(2):581-590
Journal of Solid State Electrochemistry - As a kind of organic–inorganic hybrid materials with nanocage structure, polyhedral oligomeric silsesquioxane (POSS) has the advantages of good...  相似文献   

17.
18.
Electrospun ZnO precursor nanofibers of average diameters 122±64 nm, 117±44 nm and 110±39 nm were fabricated by controlling the Al concentration of a polymeric solution. The resulting nanofibers were characterized by the XRD, SEM, EDS, TEM, XPS and PL. The electrospun Al-doped ZnO nanofiber films were polycrystalline and composed of densely packed grains, with crystallite size ranging from 28.7 nm, 25.7 nm, 25.4 nm to 20.4 nm corresponding to the atomic concentration of aluminum from 0, 1.6, 2.5 to 5.8 at.%. The incorporation of aluminum resulted in a decrease trend in the grain size and lattice parameter of the ZnO nanofiber films. The room temperature PL spectra of all samples show three different emissions, including UV (ultraviolet) emission with an obvious blue shift, Vis (visible) emission and NIR (near infrared) emission, the intensity of which decreases monotonically as the doping concentration is increased except for the highest doping level. The impurity content correlates with changes in the PL spectra, and the appropriate Al doping can improve the optical properties of ZnO nanofibers. The small size effect and Al-doping or the impurity incorporation should be responsible for the blue shift observation in Al-doped ZnO nanofiber films.  相似文献   

19.
Nanofibers of poly(vinyl pyrrolidone) (PVP)/Eu^3+ with diameters of 300-900 nm were prepared by using sol-gel processing and electrospinning technique. The products were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL). The results indicated that, Eu^3+ was successfully embedded in the onedimensional hybrid nanofibers, and the PVP/Eu^3+ hybrid nanofibers had favorable photoluminescence properties.  相似文献   

20.
The development of next-generation adsorption, separation, and filtration materials is growing with an increased research focus on polymer composites. In this study, a novel blend of chitosan (CS) and polyethylene oxide (PEO) nanofiber mats was electrospun on titanium (Ti)-coated polyethylene terephthalate (PET) track-etched membranes (TMs) with after-treatment by glutaraldehyde in the vapor phase for enhancing the nanofiber stability by crosslinking. The prepared composite, titanium-coated track-etched nanofiber membrane (TTM-CPnf) was characterized by Fourier transform infra-red (FTIR), water contact angle, and scanning electron microscopy (SEM) analyses. Smooth and uniform CS nanofibers with an average fiber diameter of 156.55 nm were produced from a 70/30 CS/PEO blend solution prepared from 92 wt. % acetic acid and electrospun at 15 cm needle to collector distance with 0.5 mL/h flow rate and an applied voltage of 30 kV on the TTM-CPnf. Short (15 min) and long (72 h)-term solubility tests showed that after 3 h, crosslinked nanofibers were stable in acidic (pH = 3), basic (pH = 13), and neutral (pH = 7) solutions. The crosslinked TTM-CPnf material was biocompatible based on the low mortality of freshwater crustaceans Daphnia magna. The composite membranes comprised of electrospun nanofiber and TMs proved to be biocompatible and may thus be suitable for diverse applications such as dual adsorption–filtration systems in water treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号