首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The relationship between local structure and visible-light photocatalytic ability of tin silicate glass prepared by sol–gel method was investigated. 119Sn Mössbauer spectrum of SnOx·SiO2 glass prepared from SnCl2 showed a small peak of SnII component besides the major amount of SnIV. The smallest bandgap energy of 2.5 ± 0.5 eV was estimated from Tauc plot, and the largest first order rate constant (k) of (13.8 ± 0.1) 10−3 min−1 was recorded from the methylene blue degradation test under visible-light irradiation. It is concluded that SnII shows remarkable photocatalytic ability when it is incorporated into silica glass matrix.

  相似文献   

2.
Ruthenium polypyridyl rigid-rod compounds with phenylene–ethynelene (OPE) spacers and an isophthalic acid (Ipa) binding group were synthesized and characterized for sensitization of nanocrystalline TiO2 (anatase) thin films. Density functional theory predicted that the most stable structure oriented the isophthalic group about 45° from normal to the TiO2 surface. Comparative experimental studies of meta- and para-isomers revealed small changes in the ground state absorption spectra and very similar excited state and redox properties. The excited state injection yields (inj = 0.15 ± 0.03) into nanocrystalline TiO2 and the subsequent charge recombination rates were found to be insensitive to the isomer utilized. Meta-substitution enabled the synthesis of sensitizers with two RuII sensitizers that displayed enhanced sunlight absorption relative to the monomeric compound.  相似文献   

3.
《Solid State Sciences》2012,14(6):673-676
Titanium dioxide (TiO2) material was synthesized using the sol gel calcination method. The structural properties of the TiO2 semiconductor were investigated by atomic force microscopy. The electrical conductivity of the TiO2 was measured as a function of temperature and TiO2 exhibits a conductivity of 2.55 × 10−6 S/m at room temperature with activation energy of 104 meV. The electrical conductivity of the TiO2 at room temperature is higher than that of nanocrystalline TiO2 (3 × 10−7 S/m) and TiO2 thin film in air (5 × 10−9 S/m) and in vacuum (8.8 × 10−10 S/m). It was found that the electrical transport mechanism of the TiO2 is controlled by thermally activated mechanism. The optical band gap of the TiO2 powder sample was determined to be 3.17 eV, which is good in agreement with the bulk TiO2 (Eg = 3.2 eV). Up to our knowledge, there is no any reported data about the band gap of TiO2 nanopowder based on the diffused reflectance calculation. Quartz crystal microbalance (QCM) TiO2 humidity sensor was prepared. The sensor indicates a large frequency change with an interaction occurred between TiO2 and humidity molecules. The sensor exhibits a good repeatability when it was exposed to the moist air of 65% RH.  相似文献   

4.
Pyrochlore-type oxide, SnII1.64(Ta1.88SnIV0.12)O6.58 was oxidized for exploring novel metastable phases. Two novel SnIV0.82(Ta0.94SnIV0.06)O4.11 phases with a fluorite-related structure, which was obtained as a pure phase, and with a rutile-related structure appearing as an impurity for the fluorite-related phase were successfully obtained similar to the previous Sn-Nb-O system. The ordered arrangement of respective cations of Sn and (0.94Ta+0.06Sn) in the precursor SnII1.64(Ta1.88SnIV0.12)O6.58 was left in the both oxidized SnIV0.82(Ta0.94SnIV0.06)O4.11 phases. In contrast to the previous Sn-Nb-O system, the cation-ordered α-PbO2-related SnIV0.82(Ta0.94SnIV0.06)O4.11 could not be obtained in the present conditions. Such a difference between the Sn-Ta-O and Sn-Nb-O systems was interpreted by larger energy barrier of the transformation from the fluorite-related phase to α-PbO2-related phase in Sn-Ta-O system than in Sn-Nb-O system.  相似文献   

5.
Radical anion salts of metal‐containing and metal‐free phthalocyanines [MPc(3?)].?, where M=CuII, NiII, H2, SnII, PbII, TiIVO, and VIVO ( 1 – 10 ) with tetraalkylammonium cations have been obtained as single crystals by phthalocyanine reduction with sodium fluorenone ketyl. Their formation is accompanied by the Pc ligand reduction and affects the molecular structure of metal phthalocyanine radical anions as well as their optical and magnetic properties. Radical anions are characterized by the alternation of short and long C?Nimine bonds in the Pc ligand owing to the disruption of its aromaticity. Salts 1 – 10 show new bands at 833–1041 nm in the NIR range, whereas the Q‐ and Soret bands are blue‐shifted by 0.13–0.25 eV (38‐92 nm) and 0.04–0.07 eV (4–13 nm), respectively. Radical anions with NiII, SnII, PbII, and TiIVO have S=1/2 spin state, whereas [CuIIPc(3?)].? and [VIVOPc(3?)].? containing paramagnetic CuII and VIVO have two S=1/2 spins per radical anion. Central metal atoms strongly affect EPR spectra of phthalocyanine radical anions. Instead of narrow EPR signals characteristic of metal‐free phthalocyanine radical anions [H2Pc(3?)].? (linewidth of 0.08–0.24 mT), broad EPR signals are manifested (linewidth of 2–70 mT) with g‐factors and linewidths that are strongly temperature‐dependent. Salt 11 containing the [NaIPc(2?)]? anions as well as previously studied [FeIPc(2?)]? and [CoIPc(2?)]? anions that are formed without reduction of the Pc ligand do not show changes in molecular structure or optical and magnetic properties characteristic of [MPc(3?)].? in 1 – 10 .  相似文献   

6.
The tetranuclear mixed-valent oxo-cluster [SnIISnIVO(O2CCF3)4]2 (1) has been prepared by reacting SnCl2 with AgO2CCF3 in a sealed ampoule at 90 °C. Alternatively, 1 was obtained by acidolysis of Ph3SnSnPh3 with trifluoroacetic acid in solution. The X-ray diffraction study of 1 revealed the presence of a SnIIOSn2IVOSnII core comprised of the penta-coordinated divalent and six-coordinated tetravalent tin atoms. The 119Sn NMR studies confirmed the stability of the cluster in solution and the presence of two different oxidation states of tin. An acidolysis of Ph3SnSnPh3 in the presence of [Cu2II(O2CCF3)4] followed by sublimation of the resulting product at 90 °C afforded the first trinuclear mixed metal Sn–Cu cluster [(C6H5)2Sn2IVCuIIO(O2CCF3)6] (2). The X-ray diffraction analysis of 2 revealed the presence of two phenyl groups attached to the six-coordinated tin(IV) atoms and the tetragonal pyramidal environment of the copper(II) atom. Both complexes have been obtained free of exogenous ligands.  相似文献   

7.
采用溶胶-凝胶法制备出纯TiO2和不同浓度Sn4+离子掺杂的TiO2光催化剂(TiO2-Snx%, x%代表Sn4+离子掺杂的TiO2样品中Sn4+离子摩尔分数). 利用X 射线衍射(XRD)、X 射线光电子能谱(XPS)和表面光电压谱(SPS)确定了TiO2-Snx%催化剂的晶相结构和能带结构, 结果表明: 当Sn4+离子浓度较低时, Sn4+离子进入TiO2晶格, 取代并占据Ti4+离子的位置, 形成取代式掺杂结构(Ti1-xSnxO2), 其掺杂能级在导带下0.38 eV处; 当Sn4+离子浓度较高时, 掺入的Sn4+离子在TiO2表面生成金红石SnO2, 形成TiO2和SnO2复合结构(TiO2/SnO2), SnO2的导带位于TiO2导带下0.33 eV处. 利用瞬态光电压谱和荧光光谱研究了TiO2-Snx%催化剂光生载流子的分离和复合的动力学过程, 结果表明, Sn4+离子掺杂能级和表面SnO2能带存在促进光生载流子的分离, 有效地抑制了光生电子与空穴的复合; 然而, Sn4+离子掺杂能级能更有效地增加光生电子的分离寿命, 提高了光生载流子的分离效率, 从而揭示了TiO2-Snx%催化剂的光催化机理.  相似文献   

8.
The present work describes the development of a new strategy to photoelectrochemical detection of L-Dopa at low potential based on oxygen reduction on TiO2 sensitized with iron phthalocyanine (FePc/TiO2). The FePc/TiO2 composite shows a photocurrent 10-fold higher than that of pure TiO2 nanoparticles and it was 4-fold higher than that of FePc exploiting visible light. The band gaps of pure TiO2 nanoparticles, FePc and FePc/TiO2, calculated according to the Kubelka–Munk equation, were 3.22 eV, 3.11 eV and 2.82 eV, respectively. The FePc/TiO2 composite showed a low charge transfer resistance in comparison to the photoelectrode modified with FePc or TiO2. Under optimized conditions, the photoelectrochemical sensor shows a linear response range from 20 up to 190 μmol L 1 with a sensitivity of 31.8 μA L mmol 1 and limit of detection of 1.5 μmol L 1 for the detection of L-Dopa.  相似文献   

9.
A simple, one‐step, supramolecular strategy was adopted to synthesize SnIV‐porphyrin‐based axially bonded triads and higher oligomers by using meso‐pyridyl SnIV porphyrin, meso‐hydroxyphenyl‐21,23‐dithiaporphyrin, and RuII porphyrin as building blocks and employing complementary and non‐interfering SnIV?O and RuII ??? N interactions. The multiporphyrin arrays are stable and robust and were purified by column chromatography. 1H, 1H–1H COSY and NOESY NMR spectroscopic studies were used to unequivocally deduce the molecular structures of SnIV‐porphyrin‐based triads and higher oligomers. Absorption and electrochemical studies indicated weak interaction among the different porphyrin units in triads and higher oligomers, in support of the supramolecular nature of the arrays. Steady‐state fluorescence studies on triads indicated the possibility of energy transfer in the singlet state from the basal SnIV porphyrin to the axial 21,23‐dithiaporphyrin. However, the higher oligomers were weakly fluorescent due to the presence of heavy RuII porphyrin unit(s), which quench the fluorescence of the SnIV porphyrin and 21,23‐dithiaporphyrin units.  相似文献   

10.
Structure and Bonding in Transitition Metal Fluorides MIIMeIVF6 A. Phase Transitions A summary outline of the structure types of all compounds MIIMeIVF6 known so far is given. Compounds with a 3d transition metal ion in the MII site crystallize in the cubic ordered ReO3 lattice and the hexagonal LiSbF6 structure. For cations with a Jahn- Teller unstable Eg ground state we have found a symmetry reduction to tetragonal and triclinic variants of those two lattice types in addition. Phase transitions between the different structures could be observed by Guinier techniques in the temperature range 80 K < T < 800 K in many cases. The relative stability of the hexagonal low temperature phases in comparison to the cubic high temperature modifications is extensively discussed on the basis of geometric parameters and the electronic properties of the MeIV and MII ions. Quite a number of compounds MIIMeIVF6 was prepared and characterized for the first time. The results of the spectroscopic investigation will be published later.  相似文献   

11.
《Polyhedron》2007,26(9-11):2291-2298
The reaction of [NEt4]3[Cr(CN)6] with titanium(III) p-toluenesulfonate at a pH of 2 affords a gray solid whose metal content and spectroscopic and magnetic properties are fully consistent with it being a Prussian blue material of stoichiometry “TiIII[CrIII(CN)6] · H2O”. The carbon, nitrogen, and hydrogen content, however, are not consistent with this stoichiometry, and further investigation showed that the gray material has a powder X-ray diffraction profile, infrared spectrum, and magnetic properties very similar to those of the “all-chromium” Prussian blue CrII[CrIII(CN)6]0.67 · 6H2O. All data, including the C, H, and N weight percentages, are consistent with the conclusion that the material isolated is a nanocomposite of CrII[CrIII(CN)6]0.67 · xH2O and TiO2 in the ratio of 1–1.6. These results suggest that TiIII reduces some of the [CrIII(CN)6]3− ions to generate TiIV and CrII; the former hydrolyzes to amorphous TiO2 · 2H2O, the latter loses its bound CN ligands and reacts with unreacted [CrIII(CN)6]3− ions to generate the crystalline all-chromium PB species. The electrochemical potentials suggest that the [CrIII(CN)6]3− ion should not be reduced by TiIII; evidently, this unfavorable reaction is driven by the insolubility of the reaction products. The results constitute a cautionary tale in two respects: first, that the characterization of Prussian blue materials must be conducted with care and, second, that the insolubility of Prussian blue analogues can sometimes drive reactions that in solution are thermodynamically unfavorable.  相似文献   

12.
《印度化学会志》2023,100(2):100881
A modified sol-gel method was used for synthesis of zinc doped black TiO2 nanoparticles. The modified sol-gel synthesised catalyst was utilised for degradation of 2, 4, 6 tri-chloro-phenol under visible light irradiation. The catalyst was characterized using XRD, SEM, TEM, BET and DRS analysis. The nanoparticles were crystalline in nature and in anatase phase. The size of zinc doped black TiO2 nanoparticles was 5 nm. The synthesised nanoparticles were mesoporous in nature and the specific surface area was found to be 34.15 m2/g. The band gap energy of zinc black TiO2 nanoparticles was found to be 2.73 eV. The point of zero charge of zinc doped black TiO2 nanoparticles was 6.7. The maximum degradation of 2, 4, 6 tri-chloro-phenol using 2 mol% zinc doped black TiO2 was found to be 95%.  相似文献   

13.
The present study provides the first experimental evidence for the stabilization of tin dopant cations immediately on the surface of an oxide having a tetragonal structure. 119Sn Mössbauer spectra of the dopant, introduced by air annealing into the bulk of anatase microcrystals, showed that it was located, in the tetravalent state, in somewhat distorted octahedral sites of a unique type. On the contrary, the reduced tin species, formed upon subsequent hydrogen annealing the Sn4+-doped samples, are found to occupy different sites being characterized by two sets of the isomer shift δ and quadrupole splitting ΔEQ values (δI = 3.25 mm s−1, ΔEQI = 1.75 mm s−1; and δII = 2.85 mm s−1, ΔEQII = 1.71 mm s−1). Either of them implies both the divalent state of tin atoms and their presence at low-coordination sites that can be assigned to the surface of crystallites. Mössbauer spectra of Sn4+←2+ daughter ions, formed upon contact with air of Sn2+, consist of a symmetrically broadened peak characterized by only slightly different average values of both the isomer shift (<δ> = 0.07 mm s−1) and quadrupole splitting (<ΔEQ> = 0.50 mm s−1), as compared to the δ and ΔEQ values for the bulk-located Sn4+. However, considerable broadening of Sn4+←2+ doublet components (Γ = 0.97 mm s−1) allows one to suggest that these secondary formed ions remain distributed over the non equivalent sites inherited from their Sn2+ precursors. The occurrence of Sn4+←2+ at surface sites is independently proven by XPS measurements that revealed a greater than 10-fold enrichment with tin of 3–5 nm thick surface layers.  相似文献   

14.
A compound of formula [SnII(NO3) [(C6H5)3 SnIV], containing a tin(IV)tin(II) bond, has been prepared, and its crystal structure is determined.  相似文献   

15.
Using a new nitrogen precursor of a mixture of ammonia and hydrazine hydrate, N-doped TiO2 photocatalyst with a high efficiency under visible light was synthesized by a precipitation method. The analysis of X-ray photoelectron spectroscopy (XPS) suggested that the doping concentration of nitrogen was 0.45 at%, while it was 0.21 at% or 0.24 at% using single ammonia or hydrazine hydrate as nitrogen precursor. The patterns of the electron paramagnetic resonance spectroscopy (EPR) indicated that the paramagnetic species of NO22?, NO and Ti3+ existed as the proposed active species. The ultraviolet–visible (UV–vis) spectra revealed that the band-gap of the N-doped TiO2 was 3.12 eV, which was slightly lower than 3.15 eV of pure TiO2. The N-doped TiO2 showed higher efficiency under both ultraviolet (UV) and visible light irradiations. Moreover, the degradation grade of 4-chlorophenol (4-CP) using the as-synthesized N-doped TiO2 under sunlight irradiation for 6 h was 82.0%, which was higher than 66.2% of the pure TiO2, 60.1% or 65.2% of the N-doped TiO2 using single ammonia or hydrazine hydrate as precursor. Density functional theory (DFT) calculations were performed to investigate the visible light response of the N-doped TiO2. Our study demonstrated that the visible activities vary well with the concentrations of NO22? species incorporated by N–TiO2 series photocatalysts and the higher activity of the as-prepared N-doped TiO2 was attributed to the enhancement of the concentration of NO22? species.  相似文献   

16.
Crystalline 1,4-distannabarrelene compounds [(ADCAr)3Sn2]SnCl3 ( 3 - Ar ) (ADCAr={ArC(NDipp)2CC}; Dipp=2,6-iPr2C6H3, Ar=Ph or DMP; DMP=4-Me2NC6H4) derived from anionic dicarbenes Li(ADCAr) ( 2 - Ar ) (Ar=Ph or DMP) have been reported. The cationic moiety of 3 - Ar features a barrelene framework with three coordinated SnII atoms at the 1,4-positions, whereas the anionic unit SnCl3 is formally derived from SnCl2 and chloride ion. The all carbon substituted bis-stannylenes 3 - Ar have been characterized by NMR spectroscopy and X-ray diffraction. DFT calculations reveal that the HOMO of 3 - Ph (ϵ=−6.40 eV) is mainly the lone-pair orbital at the SnII atoms of the barrelene unit. 3 - Ar readily react with sulfur and selenium to afford the mixed-valence SnII/SnIV compounds [(ADCAr)3SnSn(E)](SnCl6)0.5 (E=S 4 - Ar , Ar=Ph or DMP; E=Se 5 - Ph ).  相似文献   

17.
TiO2 thin films with various Mo concentrations have been deposited on glass and n‐type silicon (100) substrates by this radio‐frequency (RF) reactive magnetron sputtering at 400°C substrate temperature. The crystal structure, surface morphology, composition, and elemental oxidation states of the films have been analyzed by using X‐ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and X‐ray photoelectron spectroscopy, respectively. Ultraviolet‐visible spectroscopy has been used to investigate the degradation, transmittance, and absorption properties of doped and undoped TiO2 films. The photocatalytic degradation activity of the films was evaluated by using methylene blue under a light intensity of 100 mW cm−2. The X‐ray diffraction patterns show the presence of anatase phase of TiO2 in the developed films. X‐ray photoelectron spectroscopy studies have confirmed that Mo is present only as Mo6+ ions in all films. The Mo/TiO2 band gap decreases from ~3.3 to 3.1 eV with increasing Mo dopant concentrations. Dye degradation of ~60% is observed in Mo/TiO2 samples, which is much higher than that of pure TiO2.  相似文献   

18.
The present study deals with the gel formation tendency in the ternary TeO2-TiO2-ZnO system. Depending on the TiO2 amount, the gelation occurred at different times and subsequently several gel formation regions have been determined. Homogeneous, transparent and monolithic gels were obtained using combination of organic and inorganic precursors during the synthesis. Using XRD analysis it was established that upon the heating composites were obtained which contain an amorphous phase and different crystalline phases: TiO2 (anatase), TiO2 (rutile), α-TeO2 and ZnTeO3, depending on composition. The IR results showed that the short range order of the amorphous phases which are part of the composite materials consist of TiO6, ZnO4 and TeO4 structural units. Using UV–Vis spectroscopy it was established that the absorption edge of the gels varied from 330 nm to 364 mm and the increase in TiO2 content caused a red shifting of the cut-off. The calculated Eg values are in the range 3.41–3.75 eV higher than that of pure TiO2, TeO2 and ZnO oxides. The XPS results showed that the Te atoms in the surface layers of the samples studied exist in several chemical states as Te2+, Te0, but Te6+ dominates. Octahedrally coordinated Ti4+ ions are observed in the gels and in the samples annealed at 200 °C but a small amount of tetrahedrally coordinated Ti4+ is also detected, which indicates the incomplete polymerization of TiO6 units.  相似文献   

19.
Novel 1/1 adducts have been obtained from the complex N,N′-ethylenebis(salicylideneiminato)nickel(II) (NiSalen) with di- and mono-organotin(IV) chlorides, and their solid state configuration investigated by Mössbauer , IR and electronic spectroscopy and magnetic measurements. In coordinated NiSalen the square planar structure is maintained around NiII, and the coordination to tin involves three-coordinate phenolic oxygens. The environment of SnIV is judged to be octahedral in both types of compounds. A trans-R2, cis-Cl2 configuration is advanced for R2SnCl2NiSalen.  相似文献   

20.
The improvement of the TiO2-photoactivitiy by electron beam treatment (1 MeV) as a function of the absorbed radiation dose (MGy) is reported. The radiation-induced effects in the TiO2 crystal structure, e.g. change of the Ti3+/Ti4+ ratio, increase of the photoactivity, etc. were investigated. Three methods were implemented in this respect: for the change of the TiO2 crystal structure X-ray photoelectron spectroscopy and photoluminescence spectroscopy were applied. The photocatalytic activity of the EB-treated TiO2 was tested by taking the degree of methylene blue photodegradation as a measure of the achieved effect. The obtained experimental data of all testing methods showed that in TiO2 at an absorbed dose of 0.5 MGy optimum changes in crystal structure of the catalyst occur, resulting in the highest photocatalytic efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号