首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
由高能面 TiO2纳米片 (TiO2-NSs) 组装成的 TiO2空心纳米盒 (TiO2-HNBs)显示出比单独 TiO2-NSs 更强的光催化性能, 但是 TiO2-HNBs 依然属于紫外光催化剂, 无法充分利用太阳能. 因此, 开发具有可见光响应的由高能面 TiO2-NSs 组装而成的 TiO2-HNBs 具有重要意义. 本文将立方体 TiOF2与含有 N 和 S 元素的生物分子蛋氨酸混合, 通过一步焙烧制备了具有可见光响应活性的 N 和 S 元素共掺杂的 TiO2-HNBs(掺杂催化剂标记为 TMx, 未掺杂催化剂标记为 Tx, x 代表焙烧温度).由立方体 TiOF2到锐钛矿相 TiO2空心纳米盒的转变是一个自模板转化过程. 氟离子的存在降低了 TiO2高能面(001)面的表面能, 从而使得高能面 TiO2纳米片的形成变得可能. 因此, 热处理立方体 TiOF2可得到由高能面 TiO2纳米片组装的 TiO2空心纳米盒.本文系统研究了焙烧温度 (300-500 ℃) 对所制 TiO2-HNBs 结构与光催化性能的影响. 结果发现, 在 350 ℃下焙烧, TiOF2完全转化成锐钛矿相 TiO2-HNBs. 但是焙烧蛋氨酸与 TiOF2的混合物, 需 400 ℃才能完全实现 TiOF2到锐钛矿相TiO2-HNBs 的转变. 这说明蛋氨酸的加入阻碍了 TiOF2向锐钛矿相 TiO2-HNBs 的转变. XPS 结果显示, 经过 400 ℃焙烧的蛋氨酸改性样品 (TM400), N 和 S 元素成功掺入了 TiO2-HNBs 晶格, 使其产生可见光催化活性.相对于 400 ℃焙烧 TiOF2所得样品 T400, 蛋氨酸改性的 TM400 催化剂可见光降解罗丹明 B 染料 (RhB) 和 NO 氧化的性能分别提升了 1.55 倍和 2.0 倍, 这与其更强的可见光吸收性能和光生载流子分离效率有关. 400 ℃焙烧的蛋氨酸改性的 TM400 可见光催化活性稳定, 连续 5 次可见光催化 RhB 降解后, 其活性没有明显改变, 显示了潜在的应用前景.  相似文献   

2.
本文报道一种孔道三维相互连通锐钛矿TiO2-SiO2纳米复合介孔材料的制备.该介孔材料是以两维六方有序结构、直孔道、锐钛矿70TiO2-30SiO2-950纳米复合介孔材料(于950oC晶化2 h)为前驱体, NaOH为SiO2的刻蚀剂,通过“在孔壁内造孔”的方法获得.我们的策略是采用温和的造孔条件,如稀NaOH溶液,合适的温度与固/液比等.采用X射线衍射(XRD),透射电镜(TEM)和低温N2吸附等技术对样品的介孔结构进行了系统表征.结果表明,墙内孔的密度非常高,孔径均一(平均尺寸3.6 nm),且在三维网络高度连通原孔道,但介孔结构仍保持其完整性.锐钛矿纳米晶粒的结晶度和大小在墙内造孔前后基本保持不变.该材料光催化降解罗丹明B(0.303 min–1)与亚甲基蓝(0.757 min–1)的活性相当高,此活性分别是其母体材料的5.1和5.3倍,甚至是Degussa P25光催化剂的16.5和24.1倍.这充分表明三维连通孔道结构对活性的大幅提高起了关键作用.孔道三维连通式锐钛矿TiO2-SiO2纳米复合介孔材料对上述污染物展现出意想不到的高降解活性,显著高于迄今已报道的金属氧化物基介孔材料对上述污染物的降解活性.更重要的是,该光催化剂具有相当高的稳定性和重复使用性.相信,本方法将为具有超高性能的孔道三维相互连通其它金属氧化物基介孔材料的制备铺平了道路.
  小角XRD结果表明,母体材料的孔道是两维六方有序结构,在孔壁内造孔之后,样品原有的介孔结构仍保持其规整性.宽角XRD结果显示,二氧化钛的晶相是锐钛矿,晶粒尺寸为10.8 nm.造新孔之后,锐钛矿纳米晶粒的结晶度和大小与母体样品的相比变化不大. TEM结果显示,母体样品的孔壁内没有孔.孔道是两维六方有序排列的直孔道,孔径大小均一(平均尺寸4.1 nm).高分辨透射电镜(TEM)观察揭示,锐钛矿纳米晶粒(平均大小11.3 nm)在孔壁内随机排列,并与无定形SiO2纳米颗粒相互连接,相间共存,形成类似“砖块?水泥砂浆”砌成的孔壁,这种独特的复合骨架结构赋予其很高的稳定性.当一些SiO2纳米颗粒被去除之后, TEM观察显示,孔壁内有密集分布的孔,这些孔取向随机,并在三维方向连通原孔道,但介孔骨架结构仍保持其完整性.墙内孔的大小范围很窄(3.1?4.3 nm),平均大小为3.6 nm.高分辨TEM观察显示,锐钛矿晶粒大小与母体材料内的相比基本未变.上述结果与XRD结果一致.低温N2吸附表征结果显示,母体样品内只有一种孔道,孔径为4.0 nm.去除部分SiO2后的样品内有两种孔道,孔径分别是3.4和4.1 nm.这些结果与TEM的观察吻合.罗丹明B与亚甲基蓝在造孔前后样品内扩散速率评价结果显示,其在三维连通孔道内的扩散速率很高,大约是其母体材料内的5倍以上.这表明相互连通的孔道网络结构非常有利于客体分子在其内扩散.光催化降解性能评价结果显示,罗丹明B与亚甲基蓝在相互连通孔道内降解的速率相当高,分别是其在不连通孔道内的5.1和5.3倍.这充分证明孔道三维相互连通对活性的大幅提高起了关键作用.我们对材料的稳定性和重复使用性作了评价,经过10次循环使用孔道三维相互连通锐钛矿TiO2-SiO2纳米复合介孔材料,其吸附与光催化降解罗丹明B的性能变化不大.这充分证明本文制备的孔道连通复合介孔材料的性能是相当稳定的和可重复使用的.该方法可用于制备具有超高性能的孔道三维相互连通其它金属氧化物基介孔材料,如Nb2O5, Ta2O5等.  相似文献   

3.
Stabilized mesoporous TiO2 was synthesized by evaporation induced self assembly (EISA) method and mechanically incorporated into single-walled carbon nanotubes (SWCNT) with different ratios. The physicochemical properties of the nanocomposites (mesoporous TiO2/SWCNT) materials were investigated by Brunauer–Emmett–Teller (BET) measurement, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), photoluminescence (PL) and ultraviolet–visible (UV–Vis) spectroscopy measurements. The catalytic activity of mesoporous TiO2 and nanocomposites were assessed by examining the degradation of rhodamine B as model aqueous solution under visible light. CNTs are facilitating the photocatalytic activity of mesoporous TiO2 in the degradation of rhodamine B efficiently.  相似文献   

4.
Anatase TiO2/nanocellulose composite was prepared for the first time via a one-step method at a relatively low temperature by using cellulose nanofibers as carrier and tetrabutyl titanate as titanium precursor. The morphology, structure and element composition of the composite were characterized by SEM, EDS, TEM, XRD, XPS and UV–vis DRS. The specific surface area and thermal stability of the composite were investigated by N2 adsorption–desorption and thermogravimetric analysis, respectively, and the band gaps of the prepared photocatalysts were calculated based on the UV–vis DRS results. In addition, the prepared composite was used for the photocatalytic degradation of methyl orange (aqueous solution, 40 mg L−1). It was found that the composite had a good morphology and anatase crystal structure, and Ti-O-C bond was formed between TiO2 and nanocellulose. The specific surface area of composite was increased and the thermal stability was decreased compared with the cellulose nanofiber. Moreover, the degradation rate of methyl orange was achieved as 99.72% within 30 min, and no obvious activity loss was observed after five cycles. This work might give some insights into the design of efficient photocatalysts for the treatment of organic dye wastewater.  相似文献   

5.
《Comptes Rendus Chimie》2015,18(8):875-882
W–S–N-tri-doped TiO2 photocatalysts (WSNTiO2) were prepared by a simple sol–gel method. Tungstic acid, sodium sulfate and urea were used as tungsten, sulfur and nitrogen sources, respectively. The morphology and microstructure characteristics of the photocatalysts were evidenced by means of XRD, BET, TEM, SEM and UV–vis DRS techniques. The XRD results show that the main crystal phase of samples is anatase. It was also found that the tri-doping of TiO2 increases its BET specific surface area from 95 to 121 m2·g−1. Besides, it was shown that tri-doping narrows the band gap of TiO2 effectively, which has greatly improved the photocatalytic activity in the visible light region. The photocatalytic activity of tri-doped TiO2 powders was compared to that of bi-doped ones through the degradation of Congo Red (CR) under visible irradiation. Thus, the prepared 0.5% W–N–S–TiO2 heat treated at 450 °C showed the best photocatalytic activity compared to the prepared pure TiO2, Degussa P25, and co-doped samples (WNTiO2 and WSTiO2). In particular, a Congo Red degradation rate of approximately 99% was reached after only 35 min of visible light irradiation in the presence of 0.5% of WNSTiO2. Total organic carbon (TOC) removal of CR was up to 72% and confirmed its significant mineralization in the presence of 0.5% of WNSTiO2 photocatalyst.  相似文献   

6.
A nanoporous polymeric crystalline TiO2 composite (TiO2/PDVB‐MA) has been successfully synthesized through an in situ synthesis method using divinylbenzene (DVB), methacrylic acid (MA) and tetrabutyl titanate. The experimental results showed that TiO2 nanoparticles composed of the mixture phases of anatase and rutile were homogeneously dispersed into the PDVB‐MA support. The TiO2/PDVB‐MA composite was used as photocatalyst for Rhodamine B (RhB), bisphenol A and 2,4,6‐trichlorophenol degradation under visible light irradiation. More interestingly, the excellent photocatalytic performance of the composite was observed with regard to RhB and bisphenol A, which might be ascribed to the synergistic effect between TiO2 nanoparticles and PDVB‐MA. Moreover, TiO2/PDVB‐MA composite could be recycled at least four times in the removal of RhB, suggesting that it is a promising photocatalyst to catalyze the degradation of organic pollutants under visible light irradiation.  相似文献   

7.
Bismuth titanates, Bi2Ti2O7 (BIT), with well-defined spherical structures were synthesized by a facile hydrothermal process without the use of any surfactant or template. XRD and SEM studies have shown that spheres could be fabricated in high yields by simply manipulating the concentrations of hydroxide ions. In this case, hydroxide ions seem to play a pivotal role in controlling the formation of seeds and growth rates of the BIT particles. On the basis of structural analysis of samples obtained at different concentrations of OH, we also proposed a plausible mechanism to account for the formation of these distinctive morphologies under different conditions. The as-prepared BIT microspheres with good stability exhibited higher photocatalytic activities in the degradation of Rhodamine B (RhB) under visible light irradiation than that in commercial P25 TiO2. Furthermore, the enhanced photocatalytic performance for RhB degradation was also investigated with assistance of a small amount of H2O2.  相似文献   

8.
Nickel, nitrogen-codoped mesoporous TiO2 microspheres (Ni–N–TiO2) with high surface area, and an effective direct band gap energy of ∼2.58 eV. Nickel sulfate used as the Ni source and ammonia gas as the N source here. The efficiency of the as-prepared samples was investigated by monitoring the degradation of Rhodamine B under visible light irradiation. The experimental results indicate that Ni-doped mesoporous TiO2 microspheres show higher photocatalytic activity than mesoporous TiO2 microspheres under visible light irradiation. It mainly due to that the electron trap level (Ni2+/Ni+) promoting the separation of charge carriers and the oxygen vacancies inducing the visible light absorption. In addition, Ni–N–TiO2 shows enhanced activity compared with Ni–TiO2. Codopants and dopants are found to be uniformly distributed in TiO2 matrix. Among the all samples the 0.5% molar quantity of Ni dopant and 500 °C 2 h nitriding condition gives the highest photocatalytic activity. The treatment of ammonia gas on Ni–TiO2 sample induced oxygen vancancies, substitutional and interstitial N. A suitable treatment by ammonia gas also promote separation of charge carriers and the absorption of visible light. The active species generated in the photocatalytic system were also investigated. The strategy presented here gives a promising route towards the development of a metal and non-metal codoped semiconductor materials for applied photocatalysis and related applications.  相似文献   

9.
10.
利用太阳能驱动半导体光催化剂进行光催化降解污染物和产氢被认为是解决环境问题和能源危机最有效的方法之一.在众多的半导体光催化剂中,TiO2因其优异的化学稳定性、环境友好和成本低等优点,在光催化领域具有不可或缺的作用.介孔TiO2由于具有独特的介孔结构,更有利于光催化过程中反应物的吸附和传输.然而,单一TiO2具有较高的光生载流子重组效率和低的光利用率等缺点,导致其光催化活性低.通过负载助催化剂可以增强光吸收、促进光生载流子的分离以及提供更多活性位点,是提高光催化活性的一种有效策略.目前,常用的高效助催化剂主要为贵金属,如Pt,Pd和Au等,但昂贵的价格及稀缺性限制了其在未来的广泛应用.因此,寻找新型的非贵金属助催化剂来提高光催化剂的活性具有重要意义.MXene作为一种新型的二维过渡金属碳化物和/或氮化物,具有丰富的表面亲水性官能团、良好的金属导电性和较高的载流子迁移率等特性,适合用于光催化中作为助催化剂来提高光催化性能.受此启发,本文利用静电自组装策略将介孔TiO2纳米颗粒均匀地固定在Ti3C2MXene助催化剂上,构建了紧密的介孔TiO2/Ti3C2复合材料,并研究其光催化降解甲基橙(MO)和产氢性能.Zeta电位测试结果表明,带有相反表面电荷的介孔TiO2和Ti3C2可以通过静电作用构筑稳定的复合材料.X-射线粉末衍射、拉曼光谱、X-射线光电子能谱(XPS)、透射电子显微镜和高分辨透射电子显微镜等表征也进一步表明,成功制备了介孔TiO2/Ti3C2复合材料.XPS也证明在复合材料中光生电子从TiO2转移到Ti3C2助催化剂上,表明两者之间具有强相互作用.BET测试结果表明,相比单一的介孔TiO2,复合材料具有更大的比表面积和孔体积,可提供更多的活性位点,有利于提高光催化活性.紫外-可见漫反射光谱表明,Ti3C2助催化剂的引入提高了材料的光吸收能力.荧光光谱、时间分辨荧光光谱、光电流密度和电化学阻抗等测试结果表明,复合材料具有优异的光生载流子分离和转移能力.在光催化性能测试中,最佳Ti3C2含量(3wt%)的介孔TiO2/Ti3C2复合材料在40 min内对MO的光催化降解效率可达99.6%,并利用自由基捕获实验和电子自旋共振表征证实了活性物种·O2-和·OH在光催化降解过程中起主要作用.此外,该复合材料也表现出了较好的产氢性能(218.85μmolg-1h-1),约为单一介孔TiO2的5.6倍,且三次循环后仍保持稳定的产氢效率.综上,MXene族材料可以作为一种高效的非贵金属助催化剂应用于光催化领域.  相似文献   

11.
A ZnO-mediated photocatalysis process was used to successfully degrade Basic Blue 11 (BB-11) under visible light irradiation. The effects of influential factors like initial dye concentration, catalyst dosage, and initial pH were studied. To obtain a better understanding the mechanistic details of ZnO-assisted photodegradation of the BB-11 dye with low watt visible light irradiation, a large number of the intermediates resulting from the photodegradation were separated, identified, and characterized by high-performance liquid chromatography–photodiode array-mass spectrometry (HPLC–PDA-MS) techniques. The results indicated that the N-de-alkylation and oxidative degradation of BB-11 dye took place and that N-hydroxyalkylated intermediates were generated during the process. From the same identified intermediates we got under UV or visible light irradiation, it is proposed that the major oxidant under visible light irradiation was OH radical, not O2. HPLC–PDA-MS analysis verified the identity of intermediates, and a reaction mechanism based on them was proposed.  相似文献   

12.
In this work, samples consisting of BiVO4 with exposed (040) facets coupled with Bi2S3 (Bi2S3/BiVO4) were prepared through a one-pot hydrothermal method, using ethylenediaminetetraacetic acid as directing agent and L-cysteine as sulfur source and soft template. X-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy measurements indicated that the Bi2S3 content had a significant influence on the growth of (040) and (121) facets as well as on the morphology of the Bi2S3/BiVO4 samples. When the Bi2S3 content reached 1 mmol, the Bi2S3/BiVO4 samples exhibited a peony-like morphology. The results of transient photocurrent tests and electrochemical impedance spectroscopy measurements confirmed that a more effective charge separation and a faster interfacial charge transfer occurred in Bi2S3/BiVO4 than BiVO4. The enhanced photocatalytic activity of the Bi2S3/BiVO4 samples could be attributed to the improved absorption capability in the visible light region and the enhanced electron-hole pair separation efficiency due to the formation of the Bi2S3/BiVO4 heterostructure. In addition, the Bi2S3/BiVO4 samples showed relative stability and reusability. The simple method presented in this work could be used to fabricate composite photocatalysts with high activity for different applications, such as photocatalytic degradation of organic pollutants, photocatalytic splitting of water, and photocatalytic reduction of carbon dioxide.  相似文献   

13.
Semiconducting silver iodate (AgIO(3)) was used to modify the visible light response of an AgI/TiO(2) (AIT) catalyst by a facile method. The uncalcined AIT (AITun) and AIT calcined at 200°C (AIT200) consisted of AgIO(3), AgI, and TiO(2) semiconductors, while that calcined at 450 °C (AIT450) was composed of AgI and TiO(2). The activity in p-chlorophenol (PCP) degradation under visible light irradiation using either AITun or AIT200 was much higher than that with AIT450, which was mainly attributed to the fact that the presence of AgIO(3) provided a new matching band potential. AIT200 exhibited better photocatalytic properties than AITun due to its higher crystallinity after calcination. Moreover, the high catalytic activity of AIT200 was maintained after five successive cyclic experiments under visible irradiation. Considering the effect of radical scavengers and N(2) purging on the photocatalysis process, we deduced that the probable pathway of PCP degradation was mainly a surface charge process, caused by valence band holes.  相似文献   

14.
通过沉积法将光活性AgBr半导体负载到介孔TiO_2-SiO_2载体上合成了新型的AgBr/TiO_2-SiO_2复合光催化剂.采用X射线衍射仪、高分辨透射电镜、紫外-可见吸收光谱仪等分析了AgBr/TiO_2-SiO_2复合光催化剂的结构和光谱性质;并采用BET法测定了样品的比表面积和孔分布.结果表明,介孔TiO_2-SiO_2载体的比表面积为135.5m2/g,平均孔径约为3.8nm,AgBr的负载可以有效地将AgBr/TiO_2-SiO_2复合光催化剂的吸收光谱从紫外光区扩展到可见光区,且AgBr和TiO_2形成了异质结结构,强化了AgBr与介孔TiO_2-SiO_2载体的协同作用.以罗丹明B作为探针分子,评价了AgBr负载量对复合光催化剂可见光催化活性的影响.结果发现,当AgBr∶TiO_2=0.1,0.2,0.3和0.4(物质的量之比,下同)时,复合光催化剂的光催化反应速率常数分别为0.008 5、0.028 6、0.024 6和0.019 3min-1,活性先增加后减小,当AgBr∶TiO_2=0.2时,复合光催化剂表现出最高的光催化活性,并且在5次循环测试中均表现出较高的光催化活性.  相似文献   

15.
The photocatalytic disinfection of pathogenic bacteria in water was investigated systematically with AgI/TiO2 under visible light (lambda > 420 nm) irradiation. The catalyst was found to be highly effective in killing Escherichia coli and Staphylococcus aureus. The adsorbed *OH and hVB+ on the surface of the catalyst were proposed to be the main active oxygen species by study of electron spin resonance and the effect of radical scavengers. The process of destruction of the cell wall and the cell membrane was verified by TEM, potassium ion leakage, lipid peroxidation, and FT-IR measurements. Some products from photocatalytic degradation of bacteria such as aldehydes, ketones, and carboxylic acids were identified by FT-IR spectroscopy. These results suggested that the photocatalytic degradation of the cell structure caused the cell death. The electrostatic force interaction of the bacteria-catalyst significantly affected the efficiency of disinfection on the basis of the E. coli inactivation under different conditions.  相似文献   

16.
SiC-BiVO4-P and SiC-BiVO4-H composites have been prepared by precipitation method and hydrothermal method, respectively. Rod-like BiVO4 particles dispersed on the surface of micro-sized SiC particles homogeneously in SiC-BiVO4-H. Due to the formed heterostructure between BiVO4 and SiC, photo-generated electrons and holes were effectively separated. Under visible light irradiation, SiC-BiVO4-H exhibited the best performance for photocatalytic oxidation of Rhodamine B, achieved about 7.5 times improvement in photocatalytic degradation rate constants compared with that of the pristine SiC powder. The possible photocatalysis mechanism of SiC/BiVO4 related to the band positions of the semiconductors under visible light irradiation was also discussed in detail. In addition, the radicals trapping experiments revealed that all three radicals (holes, OH, and O2?) play an important role in the Rhodamine B degradation.  相似文献   

17.
化石能源的使用可产生大量CO2,带来严重的温室效应。光催化CO2还原生产太阳燃料技术既有望缓解温室效应,又可以将低能量密度的太阳能转化为高能量密度的化学能储存起来方便使用。高效光催化材料的开发是发展光催化技术的关键。迄今,在已开发的所有半导体光催化材料中, TiO2仍是广泛研究的明星材料。在实际使用中, TiO2的光催化效率仍受限于其极弱的可见光利用率和较高的电子-空穴复合几率。近年来,越来越多的研究表明TiO2的结构与形貌特征极大地影响其光催化效率。尤其, TiO2的外露晶面设计与晶面效应研究引起了广泛关注。由于具有较高表面能和较多表面不饱和键,起初大多数理论和实验研究认为锐钛矿TiO2(001)晶面是光催化活性晶面。后来,越来越多研究表明并非锐钛矿TiO2(001)晶面的暴露比例越高其光催化活性就越高。最近,我们发现锐钛矿TiO2(001)晶面与(101)晶面在调控光催化CO2还原性能上具有良好的协同效应。密度泛函理论计算表明,锐钛矿TiO2的(001)晶面与(101)晶面的能带结构有差异,(001)晶面的导带位置相对于(101)晶面而言较高,而(101)晶面的价带位置相对于(001)晶面而言较低。基于此我们提出,具有合适比例的锐钛矿TiO2的(001)晶面与(101)晶面的交界处可以形成最佳的表面异质结或晶面异质结。表面异质结的形成导致光生电子倾向于向(101)扩散,光生空穴倾向于向(001)扩散,从而促进光生电子-空穴分离,降低光生电子-空穴复合几率。在此工作基础上,我们直接以氮化钛为原料,氢氟酸为添加剂,通过简单的水热反应一步合成了氮自掺杂的TiO2微米片。利用X射线粉末衍射、扫描电镜、X射线光电子能谱、紫外-可见漫反射光谱、氮气吸附-脱附以及电化学阻抗谱等方法手段对所制备的光催化剂进行了基本结构与理化性质表征分析,并研究了其可见光光催化CO2还原性能。电镜照片结果表明,我们所制备的氮自掺杂锐钛矿TiO2微米片的(001)晶面与(101)晶面比例分别为65%和35%。基于我们前期研究结果, TiO2微米片的(001)晶面与(101)晶面可以形成表面异质结,具有良好的电荷分离效率,这也得到了电化学阻抗谱研究结果的证明。同时,由于N的原位掺杂,所制备的TiO2微米片具有优异的可见光捕获能力。由于可见光利用效率增强与光生电子-空穴分离效率提高这两方面的综合作用,所制备的氮自掺杂TiO2微米片具有非常好的可见光光催化CO2还原制甲醇性能,比商用P25及氮掺杂TiO2纳米粒子等参考样品的可见光光催化性能更优异。研究表明,通过原位自掺杂方法与晶面设计方法相结合,可以同时改善TiO2的可见光利用效率和光生电子-空穴分离效率,优化TiO2的可见光光催化性能,这也为后续开发新型高效光催化材料提供了新思路。  相似文献   

18.
An ion-implantation method was used to prepare V-ion-implanted P25 TiO2 photocatalysts. Their photocatalytic activity for the degradation of formic acid under visible light irradiation (lambda>450 nm) was investigated. Upon implantation of V ions into the lattice of P25 TiO2, the photoactivity was remarkably enhanced. HRTEM images showed that the implanted V ions existed in the form of VO2(T) in the lattice of P25 TiO2. The intensity of photoluminescence (PL) spectra of V-ion-implanted P25 TiO2 decreased with the increase of the amount of implanted V ions, indicating the decrease of electron-hole pair recombination. It was also observed that the lower the PL intensity of V-ion-implanted P25 TiO2, the higher the photoactivity.  相似文献   

19.
Photoelectrocatalytic degradation of various dyes under visible light irradiation with a TiO(2) nanoparticles electrode has been investigated to reveal the mechanism for TiO(2)-assisted photocatalytic degradation of dyes. The degradation of both cationic and anionic dyes at different biases, including the change in the degradation rate of the dyes and the photocurrent change with the bias potential, the degraded intermediates, the voltage-induced adsorption of dyes, the accumulation of electrons in the TiO(2) electrode, the effect of various additives such as benzoquinone (BQ) and N,N-dimethyl aniline (DMA), and the formation of active oxygen species such as O(2)(*-) and H(2)O(2) were examined by UV-visible spectroscopy, HPLC, TOC, and spin-trap ESR spectrometry. It was found that the dyes could controllably interact with the TiO(2) surface by external bias changes and charging of dyes. The cationic dyes such as RhB and MG underwent efficient mineralization at negative bias, but the N-dealkylation process predominated at positive bias under visible light irradiation. The discolorations of the anionic dyes SRB and AR could not be accelerated significantly at either negative or positive bias. At a negative bias of -0.6 V vs SCE, O(2)(*-) and dye(*+) were formed simultaneously at the electrode/electrolyte interface during degradation of cationic RhB. In the case of anionic dyes, however, it is impossible for the O(2)(*-) and dye cationic radical to coexist at the electrode/electrolyte surface. Experimental results imply both the superoxide anionic radical and the dye cationic radical are essential to the mineralization of the dyes under visible light-induced photocatalytic conditions.  相似文献   

20.
In this paper,a thiol-functionalized nanophotocatalyst MPTES/TiO_2 was first synthesized by one-pot method using P123 as a template.X-ray diffraction confirms the complete anatase crystalline of thiol-functionalized TiO_2,N_2 adsorption-desorption isotherm demonstrated that these materials possess high surface area and mesoporous structure.The results of XPS show that MPTES has been successfully polymerized in mesoporous structured TiO_2.The photodegradation of phenanthrene(PHE) was investigated under vi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号