首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Backward bifurcation of an epidemic model with saturated treatment function   总被引:1,自引:0,他引:1  
An epidemic model with saturated incidence rate and saturated treatment function is studied. Here the treatment function adopts a continuous and differentiable function which can describe the effect of delayed treatment when the number of infected individuals is getting larger and the medical condition is limited. The global dynamics of the model indicate that the basic reproduction number being the unity is a strict threshold for disease eradication when such effect is weak. However, it is shown that a backward bifurcation will take place when this delayed effect for treatment is strong. Therefore, driving the basic reproduction number below the unity is not enough to eradicate the disease. And a critical value at the turning point is deduced as a new threshold. Some sufficient conditions for the disease-free equilibrium and the endemic equilibrium being globally asymptotically stable are also obtained. Mathematical results in this paper suggest that giving the patients timely treatment, improving the cure efficiency and decreasing the infective coefficient are all valid methods for the control of disease.  相似文献   

2.
A stage-structured epidemic model is proposed under the assumptions that the disease can only be transmitted among adults and that there is also intraspecific competition among them. We study the existence of equilibria and also obtain their local stability, which implies the occurrence of backward bifurcation. Moreover, sufficient conditions on the global stability of some equilibria are provided.  相似文献   

3.
In this paper, we consider a two-dimensional SIS model with vaccination. It is assumed that vaccinated individuals become susceptible again when vaccine loses its protective properties with time. Here the rate at which vaccinated individual move to susceptible class again, depends upon vaccine age and hence it is assumed to be a variable. This SIVS model with treatment exhibits backward bifurcation under certain conditions on treatment which complicate the criteria for the success of the treatment by making it possible to have stable endemic states. We also show how the infectivity and the recovery function affect the existence of backward bifurcation.  相似文献   

4.
In this paper, a stage‐structured SI epidemic model with time delay and nonlinear incidence rate is investigated. By analyzing the corresponding characteristic equations, the local stability of an endemic equilibrium and a disease‐free equilibrium, and the existence of Hopf bifurcations are established. By comparison arguments, it is proved that if the basic reproduction number is less than unity, the disease‐free equilibrium is globally asymptotically stable. If the basic reproduction number is greater than unity, by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the endemic equilibrium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
We describe and analyze a simple SIS model with treatment. In particular, we give a completely qualitative analysis by means of the theory of asymptotically autonomous system. It is found that a backward bifurcation occurs if the adequate contact rate or the capacity is small. It is also found that there exists bistable endemic equilibria. In the case of disease-induced death, it is shown that the backward bifurcation also occurs. Moreover, there is no limit cycle under some conditions, and the subcritical Hopf bifurcation occurs under another conditions. Supported by the National Natural Science Foundation of China (No. 10571143, 30770555)  相似文献   

6.
We consider an epidemic model for the dynamics of an infectious disease that incorporates a nonlinear function h(I), which describes the recovery rate of infectious individuals. We show that in spite of the simple structure of the model, a backward bifurcation may occur if the recovery rate h(I) decreases and the velocity of the recovery rate is below a threshold value in the beginning of the epidemic. These functions would represent a weak reaction or slow treatment measures because, for instance, of limited allocation of resources o sparsely distributed populations. This includes commonly used functionals, as the monotone saturating Michaelis–Menten, and non monotone recovery rates, used to represent a recovery rate limited by the increasing number of infected individuals. We are especially interested in control policies that can lead to recovery functions that avoid backward bifurcation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
An epidemic model with standard incidence rate and treatment rate of infectious individuals is proposed to understand the effect of the capacity for treatment of infectives on the disease spread. It is assumed that treatment rate is proportional to the numbers of infectives below the capacity and is a constant when the number of infectives is greater than the capacity. It is proved that the existence and stability of equilibria for the model is not only related to the basic reproduction number but also the capacity for treatment of infectives. It is found that a backward bifurcation occurs if the capacity is small. It is also found that there exist bistable endemic equilibria if the capacity is low.  相似文献   

8.
Global behavior and permanence of SIRS epidemic model with time delay   总被引:1,自引:0,他引:1  
In this paper an autonomous SIRS epidemic model with time delay is studied. The basic reproductive number R0 is obtained which determines whether the disease is extinct or not. When the basic reproductive number is greater than 1, it is proved that the disease is permanent in the population, and explicit formula are obtained by which the eventual lower bound of the fraction of infectious individuals can be computed. Throughout the total paper, we mainly use the technique of Lyapunov functional to establish the global stability of the infection-free equilibrium and the local stability of the endemic equilibrium but need another sufficient condition.  相似文献   

9.
In this paper, a SIR model with two delays and general nonlinear incidence rate is considered. The local and global asymptotical stabilities of the disease‐free equilibrium are given. The local asymptotical stability and the existence of Hopf bifurcations at the endemic equilibrium are also established by analyzing the distribution of the characteristic values. Furthermore, the sufficient conditions for the permanence of the system are given. Some numerical simulations to support the analytical conclusions are carried out. At last, some conclusions are given. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
An SIS epidemic model with treatment is proposed. The incidence rate of the model, which can include the bilinear incidence rate and the standard incidence rate, is a general nonlinear incidence rate. The global dynamics of the model are studied and then we can understand the effect of the capacity for treatment. It is found that a backward bifurcation occurs and there exist bistable endemic equilibria if the capacity is low. Mathematical results suggest that decreasing the basic reproduction number is insufficient for disease eradication and improving the efficiency and capacity of treatment is important for this end.  相似文献   

11.
In this paper, a cholera epidemic model with saturated recovery rate is studied. Backward bifurcation leading to bistability possibly occurs, and global dynamics are shown by compound matrices and geometric approaches. Numerical simulations are presented to illustrate the results. Our results suggest that the basic reproduction number itself is not enough to describe whether cholera will prevail or not when the resources for treatment of infectives are limited and suggest that we should pay more attention to the initial state of cholera. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
13.
利用细致分析的方法对单种群时滞反馈控制生态系统进行研究,获得了该系统正解持久生存的充分条件.  相似文献   

14.
In this paper, an age‐structured population model with the form of neutral functional differential equation is studied. We discuss the stability of the positive equilibrium by analyzing the characteristic equation. Local Hopf bifurcation results are also obtained by choosing the mature delay as bifurcation parameter. On the center manifold, the normal form of the Hopf bifurcation is derived, and explicit formulae for determining the criticality of bifurcation are theoretically given. Moreover, the global continuation of Hopf bifurcating periodic solutions is investigated by using the global Hopf bifurcation theory of neutral equations. Finally, some numerical examples are carried out to support the main results.  相似文献   

15.
An epidemic model with standard incidence rate and saturated treatment function of infectious individuals is proposed to understand the effect of the capacity for treatment of infective individuals on the disease spread. The treatment function in this paper is a continuous and differential function which exhibits the effect of delayed treatment when the rate of treatment is lower and the number of infected individuals is getting larger. It is proved that the existence and stability of the disease-free and endemic equilibria for the model are not only related to the basic reproduction number but also to the capacity for treatment of infective individuals. And a backward bifurcation is found when the capacity is not enough. By computing the first Lyapunov coefficient, we can determine the type of Hopf bifurcation, i.e., subcritical Hopf bifurcation or supercritical Hopf bifurcation. We also show that under some conditions the model undergoes Bogdanov-Takens bifurcation. Finally, numerical simulations are given to support some of the theoretical results.  相似文献   

16.
In this paper, an eco-epidemiological model with a stage structure is considered. The asymptotical stability of the five equilibria, the existence of stability switches about positive equilibrium, is investigated. It is found that Hopf bifurcation occurs when the delay τ passes though a critical value. Some explicit formulae determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulations for justifying the theoretical analysis are also provided. Finally, biological explanations and main conclusions are given.  相似文献   

17.
In this paper, a non‐autonomous SIRVS epidemic model with time delay and vaccination is investigated. We assume that the vaccinated have a constant immunity period. Some new threshold conditions are obtained. These threshold conditions govern the extinction and permanence of the disease. When the model degenerates into the periodic or autonomous case, the corresponding basic reproduction number can be derived from these threshold conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the stability and Hopf bifurcation of a delayed viral infection model with logistic growth and saturated immune impairment is studied. It is shown that there exist 3 equilibria. The sufficient conditions for local asymptotic stability of the infection‐free equilibrium and no‐immune equilibrium are given. We also discussed the local stability of positive equilibrium and the existence of Hopf bifurcation. Moreover, the direction and stability of Hopf bifurcation is obtained by using standard form theory and the center manifold theorem. Finally, numerical simulations are performed to verify the theoretical conclusions.  相似文献   

19.
An SIS epidemic model with a limited resource for treatment is introduced and analyzed. It is assumed that treatment rate is proportional to the number of infectives below the capacity and is a constant when the number of infectives is greater than the capacity. It is found that a backward bifurcation occurs if the capacity is small. It is also found that there exist bistable endemic equilibria if the capacity is low.  相似文献   

20.
对一种具有种群动力和非线性传染率的传染病模型进行了研究,建立了具有常数迁入率和非线性传染率βI~pS~q的SI模型.与以往的具有非线性传染率的传染病模型相比,这种模型引入了种群动力,也就是种群的总数不再为常数,因此,该类模型更精确地描述了传染病传播的规律.还讨论了模型的正不变集,运用微分方程稳定性理论分析了模型平衡点的存在性及稳定性,得出了疾病消除平衡点和地方病平衡点的全局渐进稳定的充分条件.进一步的,得出了在某些参数范围内会出现Hopf分支现象,并对上述模型进行了生物学讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号