首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhancement of reaction performance utilizing microwave irradiation has drawn so much interest due to its shorter reaction time and low catalyst loading. These advantages are particularly significant from kinetics and thermodynamics perspectives. This study aimed to investigate the kinetics and thermodynamics of microwave-assisted transesterification of palm oil-based methyl ester into biolubricant. The transesterification reaction of palm oil methyl ester (PME) and trimethylolpropane (TMP) was conducted at 110–130 °C for 90 min under vacuum condition. Sodium methoxide was employed as the catalyst at 0.6 wt% of reactants fixed at molar ratio of 4:1 (PME: TMP). The experimental data were fitted with the second-order reversible reaction kinetics mechanisms. The data were solved via Runge-Kutta 4,5 order using MATLAB software. Analysis on the data revealed that the reaction rate constants at temperatures of 110–140 ℃ were in the range of 0.01–0.63 [(w/w)(min)]−1, with standard errors of 0.0026–0.0228 within 99.99% prediction interval. Microwave-assisted reaction obtained 17.0 kcal/mol of activation energy. This method reduced activation energy by 49% as compared to the conventional heating. Activation energy and time-periodic energy assessment showed that the reaction was endothermic. The reaction at 130 °C is the easiest to activate. The positive Gibbs free energy (ΔG > 0) found using Eyring-Polanyi equation indicated that the transesterification was non-spontaneous and endergonic.  相似文献   

2.
多频超声反应槽连续强化酸化油酯交换制备生物柴油研究   总被引:1,自引:0,他引:1  
以平均酸值高达33.07 mgKOH/g不可食用的廉价酸化油为原料,利用自行设计的多频超声溢流槽连续强化酯交换反应生物柴油生产装置,先后经预酯化、酯交换两步反应,高效、低耗的制备生物柴油。主要考察了室温下物料流量(停留时间)、超声功率、超声频率及组合、KOH用量、醇油物质的量比对酯交换反应的影响及单位产品能耗。结果表明,多频组合超声辐射比单频更有利于生物柴油的制备;预酯化后的油料在流量为25 L/h(物料停留时间为54 min),催化剂(KOH)用量为1.2%(质量分数),醇油物质的量比为6∶1和各反应槽功率为200 W的条件下,甲酯产率达96.83%。50 L废弃酸化油能制得符合国标GB19147—2009的生物柴油48L,整个生物柴油制备过程总耗时和总耗电量仅为8.667 h、5.42 kWh。  相似文献   

3.
Microwave-assisted organic synthesis in nonpolar solvents is investigated utilizing cylinders of sintered silicon carbide (SiC)--a chemically inert and strongly microwave absorbing material--as passive heating elements (PHEs). These heating inserts absorb microwave energy and subsequently transfer the generated thermal energy via conduction phenomena to the reaction mixture. The use of passive heating elements allows otherwise microwave transparent or poorly absorbing solvents such as hexane, carbon tetrachloride, tetrahydrofuran, dioxane, or toluene to be effectively heated to temperatures far above their boiling points (200-250 degrees C) under sealed vessel microwave conditions. This opens up the possibility to perform microwave synthesis in unpolar solvent environments as demonstrated successfully for several organic transformations, such as Claisen rearrangements, Diels-Alder reactions, Michael additions, N-alkylations, and Dimroth rearrangements. This noninvasive technique is a particularly valuable tool in cases where other options to increase the microwave absorbance of the reaction medium, such as the addition of ionic liquids as heating aids, are not feasible due to an incompatibility of the ionic liquid with a particular substrate. The SiC heating elements are thermally and chemically resistant to 1500 degrees C and compatible with any solvent or reagent.  相似文献   

4.
The synthesis of complex macrodiolides involving microwave-accelerated transesterification of chiral, nonracemic, hydroxy esters is described. Methodology development studies indicate that both microwave power and reaction temperature play an important role in the efficiency of cyclodimerizations. Hydroxy ester monomer pairs were evaluated using an analytical rehearsal leading to the preparation of a 127-member library of highly diverse and stereochemically well-defined macrodiolides. Preliminary assays identified a novel macrodiolide antagonist of the kappa opioid receptor.  相似文献   

5.
Achieving the EU 2030 vision of a 15% minimum amount of biofuels utilized in the road transportation require more research on biofuel production from biomass feedstock. To this end, this review study examines the use of green, deep eutectic solvents and direct transesterification approaches for biomass conversion to biofuels. Next, biogas production from anaerobic co-digestion of microalgae biomass is presented. Lastly, the effect of operating conditions, as well as advantages and limitations of several biomass conversion techniques are outlined. Of note, this study presents promising microalgae conversion processes which could be progressed are the use of bio-based solvents and supercritical fluids for biodiesel production, hydrothermal liquefaction for biogas production, microwave-induced pyrolysis for syngas production, and ultrasound/microwave enhanced extraction for bio-oil production. These are based on the possibility of high yield and process economics. We have also enumerated knowledge gaps needed to propel future studies.  相似文献   

6.
Controlled microwave heating in modern organic synthesis   总被引:21,自引:0,他引:21  
Although fire is now rarely used in synthetic chemistry, it was not until Robert Bunsen invented the burner in 1855 that the energy from this heat source could be applied to a reaction vessel in a focused manner. The Bunsen burner was later superseded by the isomantle, oil bath, or hot plate as a source for applying heat to a chemical reaction. In the past few years, heating and driving chemical reactions by microwave energy has been an increasingly popular theme in the scientific community. This nonclassical heating technique is slowly moving from a laboratory curiosity to an established technique that is heavily used in both academia and industry. The efficiency of "microwave flash heating" in dramatically reducing reaction times (from days and hours to minutes and seconds) is just one of the many advantages. This Review highlights recent applications of controlled microwave heating in modern organic synthesis, and discusses some of the underlying phenomena and issues involved.  相似文献   

7.
A cost-effective and environmentally friendly biodiesel synthesis has drawn attention in recent research activities. Used cooking oil which is known as waste is used in this study. The objectives of this research were to study an effect of biobased-catalyst which is used as supporting catalyst in simultaneous ozonolysis and transesterification for biodiesel synthesis and to study the effect of two steps process in biodiesel synthesis. The bio-based catalyst used in this process was empty palm bunch ash which was used as supporting catalyst for KOH. Two steps reaction were designed, the first step was run in a reactor at 30 °C with a continuous supply of ozone gas for 3 hours to cleave the unsaturated fatty acids at the double bonds. The second step was a follow up process after the first step without a supply of ozone gas, the temperature was increased up to 60 °C and the reaction continue for two hours. The second step aimed to convert saturated fatty acid which was not yet fully converted at the first step. Results of this study showed that 1.5% of KOH gave better performance in producing short chain methyl esters compared to 1% of KOH in the first step process at various percent weight of ash. The highest short chain methyl esters and long chain methyl esters produced in the first step process were 85.722 mg/liter and 655.286 mg/liter respectively, which was used 17.3 weight % ash and 1.5 weight % KOH. Short chain methyl esters were produced as a result of unsaturated fatty acid cracked by ozonolysis. It is confirmed that a simultaneous ozonolysis and transesterification occurred in the first step process. In conclusion, the presence of bio-based catalyst as supporting catalyst for KOH to produce higher total methyl esters has been effective. The second step process in this experiment was not effective since the effect of reaction time can enhance the hydrolysis of esters as a reverse reaction of transesterification, resulted in loss of esters.  相似文献   

8.
Critical review on analytical methods for biodiesel characterization   总被引:1,自引:0,他引:1  
Biodiesel is an alternative fuel composed of mono-alkyl esters and obtained mainly from the base-catalyzed transesterification reaction of oils or fats. Its use (pure or blended) does not demand any modification in the diesel engine and in the existing fuel distribution and storage infrastructure. Moreover, biodiesel has a high energetic yield, fixes the solar energy and contains insignificant amounts of sulphur. Therefore, biodiesel is currently the best substitute for fossil diesel fuel.Besides mono-alkyl esters, glycerol (main co-product), alcohol, catalyst, free fatty acids, tri-, di- and monoglycerides compose the final mixture of biodiesel production process. These and other kinds of contaminants can lead to severe operational and environmental problems. Therefore, the quality control of biodiesel is greatly significant to the success of its commercialization and market acceptance. Some important issues on the biodiesel quality control involve the monitoring of transesterification reaction, the quantification of mono-alkyl esters and free- and bonded glycerol as well as determination of residual catalysts and alcohol. Moreover, the determination of blend levels is another key aspect of biodiesel analyses. Chromatography and spectroscopy are the analytical methods most used for the biodiesel characterization, but procedures based on physical properties are also available.Previously, a review on analytical methods used to evaluate biodiesel quality was written by Knothe. Due to the importance of this field, we made an update of Knothes’ review. Therefore, in this paper, we will describe new developments in biodiesel analyses and some references showed in Knothes’ paper. Specially, we will describe analytical methods used for quantification of glycerol, mono-, di-, triglycerides, methanol, water, Na, K, P, and steroids in biodiesel or along the transesterification reaction. Also, the determination of biodiesel content in blends and some physicochemical parameters are discussed. At the end, we will assess the available techniques and point out some improvements on analytical methods for biodiesel characterization.  相似文献   

9.
Esterification-chlorination of glycerol provides chlorohydrin esters in high yields. A ratio of reagents close to equivalence can be used, so that atom economy of the reaction is optimized. The reaction can be carried out using either classical or microwave heating, and no solvent is required. 2-Chloro-1-(chloromethyl)ethyl esters can be obtained in high regioisomeric relationship when either low or moderate temperature is used. In contrast, microwave irradiation allows the use of higher reaction temperatures that render mixtures of both regioisomers in variable relationships. Kinetic control of the process is proposed for classical heating, and experimental results are analyzed with the aid of ab initio calculated values. Non-thermal phenomena can be used to explain the high efficiency of microwave irradiation at low temperature.  相似文献   

10.
Production of biodiesel fuel by transesterification of rapeseed oil   总被引:5,自引:0,他引:5  
Fatty acid methyl esters (FAMEs) show large potential applications as diesel substitutes, also known as biodiesel fuel. Biodiesel fuel as renewable energy is an alternative that can reduce energy dependence on petroleum as well as air pollution. Several processes for the production of biodiesel fuel have been developed. Transesterification processes under alkali catalysis with short-chain alcohols give high yields of methyl esters in short reaction times. We investigated transesterification of rapeseed oil to produce the FAMEs. Experimental reaction conditions were molar ratio of oil to alcohol, concentration of catalyst, type of catalyst, reaction time, and temperature. The conversion ratio of rapeseed oil was enhanced by the alcohol:oil mixing ratio and the reaction temperature.  相似文献   

11.
A mild procedure for the conversion of steroid esters into the corresponding alcohols via lipase-catalyzed transesterification reaction in organic solvents is described. Aspects of stereoselectivity and regioselectivity of the reaction are noted.  相似文献   

12.
A new strategy for the synthesis of polyhydroquinolines from task-specific ionic liquids (TSIL) as a soluble support was developed. The preparation of the polyhydroquinolines by a three-component reaction was achieved by using ionic liquid-phase bound beta-oxo esters. These starting functionalized esters were synthesized by a solventless transesterification without catalyst under microwave irradiation. The structure of the intermediates in each step was verified routinely by spectroscopic analysis, and after oxidation of the polyhydroquinolines grafted on the TSIL with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone or after cleavage (transesterification, saponification-acidification), the target compounds were obtained in good yields and high purities.  相似文献   

13.
We have developed a simple, efficient, and environmentally benign microwave-assisted InCl3-catalyzed synthesis of N-carbazolyldihydropyridines via a four-component reaction of 3-amino-9-ethylcarbazole, malononitrile, aromatic aldehydes, and acetylenic esters. The use of microwave heating allowed for reduced reaction times and resulted in higher yields. This four-component reaction is atom-efficient, high-yielding, and applicable to a wide variety of four-component reactions.  相似文献   

14.
Biodiesel fuel is an alternative and renewable energy source, which may help to reduce air pollution, as well as our dependence on petroleum for energy. Several processes have already been developed for the production of biodiesel. Alkali-catalyzed transesterification with short-chain alcohols, for example, generates high yields of methyl esters in short reaction times. In this study, we have evaluated the efficacy of batch (one- and two-stage) transesterification of rapeseed oil in the production of rapeseed methyl ester. The conversion of rapeseed oil exhibited similar reaction patterns and yields in 30- and 1-L reaction systems. Approximately 98% of the rapeseed oil was converted at 400 rpm within 20 min, under the following conditions: 1% (w/w) KOH, 1ratio10 methanol molar ratio, and at 60 degrees C. In the 30-L, two-stage transesterification process, approx 98.5% of the rapeseed oil was converted at a 1ratio4.5 molar ratio and 1% (w/w) KOH at 60 degrees C for 30 min (first reaction condition), and at a 1ratio1 molar ratio and 0.2% (w/w) KOH at 60 degrees C for 30 min (second reaction condition).  相似文献   

15.
The use of passive heating elements made out of chemically inert sintered silicon carbide (SiC) allows microwave transparent or poorly absorbing reaction mixtures to be heated under microwave conditions. The cylindrical heating inserts efficiently absorb microwave energy and subsequently transfer the generated thermal energy via conduction phenomena to the reaction mixture. In the case of low to medium microwave absorbing reaction mixtures, the addition of SiC heating elements results in significant reductions (30-70%) in the required microwave power as compared to experiments performed without heating element at the same temperature. The method has been used to probe the influence of microwave power (electromagnetic field strength) on chemical reactions. Six diverse types of chemical transformations were performed in the presence or absence of a SiC heating element at the same reaction temperature but at different microwave power levels. In all six cases, the measured conversions/yields were similar regardless of whether a heating element was used or not. The applied microwave power had no influence on the reaction rate, and only the attained temperature governed the outcome of a specific chemical process under microwave conditions.  相似文献   

16.
Precise microwave heating has changed the way many small molecules are being synthesized and, currently, the field of solid-phase peptide synthesis is undergoing dramatic changes owing to the use of microwave heating. To fully reap the benefits of precise microwave heating for the formation of amide bonds in peptide synthesis, it is important to understand the kinetics of formation and break-down of activated esters and their N-acylation of the nascent peptide chain at elevated temperatures. Herein, we present systematic studies of, first, the rate of formation of activated esters by NMR spectroscopy and, second, their N-acylation during peptide synthesis. A study of the amount of residual water in the solvents revealed a significant effect on electrophilic reagents and intermediates. This observation was expanded into a general study of microwave heating in peptide synthesis.  相似文献   

17.
Microwave travels at the speed of light, and transfers energy solely to materials. This holds great promise for energy conservation in industrial processes. However, due to differences with common heating principles, and misunderstanding of the correct way to handle them, the effectiveness of microwaves has been underestimated, and development of technologies using microwaves often stops due to this. This paper has focused on the use of microwave heating for organic/polymer synthesis, specifically for a highly effective condensation reaction and for use with ionic reactants. In addition to covering the process of ascertaining which reactions are suitable for the application of microwave heating, and introducing studies on scaling these up, this paper covers points of caution, especially those relating to the all‐important measurement/control of temperature. Based on their accumulation of expertise in the area, the authors present the design for equipment/plants for industrial use and introduce their research into the practical application of such technology.  相似文献   

18.
Biodiesel fuel is an alternative and renewable energy source, which may help to reduce air pollution, as well as our dependence on petroleum for energy. Several processes have already been developed for the production of biodiesel. Alkali-catalyzed transesterification with short-chain alcohols, for example, generates high yields of methyl esters in short reaction times. In this study, we have evaluated the efficacy of batch (one- and two-stage) transesterification of rapeseed oil in the production of rapeseed methyl ester. The conversion of rapeseed oil exhibited similar reaction patterns and yields in 30- and 1-L reaction systems. Approximately 98% of the rapeseed oil was converted at 400 rpm within 20 min, under the following conditions: 1% (w/w) KOH, 1∶10 methanol molar ratio, and at 60°C. In the 30-L, two-stage transesterification process, approx 98.5% of the rapeseed oil was converted at a 1∶4.5 molar ratio and 1% (w/w) KOH at 60°C for 30 min (first reaction condition), and at a 1∶1 molar ratio and 0.2% (w/w) KOH at 60°C for 30 min (second reaction condition).  相似文献   

19.
Precise microwave heating has changed the way many small molecules are being synthesized and, currently, the field of solid‐phase peptide synthesis is undergoing dramatic changes owing to the use of microwave heating. To fully reap the benefits of precise microwave heating for the formation of amide bonds in peptide synthesis, it is important to understand the kinetics of formation and break‐down of activated esters and their N‐acylation of the nascent peptide chain at elevated temperatures. Herein, we present systematic studies of, first, the rate of formation of activated esters by NMR spectroscopy and, second, their N‐acylation during peptide synthesis. A study of the amount of residual water in the solvents revealed a significant effect on electrophilic reagents and intermediates. This observation was expanded into a general study of microwave heating in peptide synthesis.  相似文献   

20.
房东旭  刘智焬  江治 《分子催化》2022,36(5):456-466
微波是一种能量传递方式。与传统电加热相比,微波加热具有加热速度快、热惯性小、选择性加热等特点,因而被视为一种优质的能量来源。微波催化是一种使用微波对反应系统供能,从而推动催化反应进行的化学过程。近年来,许多研究者致力于探索和发展微波催化技术,包括利用微波技术提升化学反应速率、开发具有出色微波吸收能力的催化剂、建立节能环保的微波催化系统等。本文首先介绍了微波的相关理论,讲述了材料对微波的吸收原理;然后从微波催化降解挥发性有机物(Volatile Organic Compounds, VOCs)、微波催化污水处理、微波催化生物质热解和微波催化碳氢化合物转化等方面综述了微波催化在能源环境中的应用;最后对微波催化过程的机理展开了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号