首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
波动方程两种哈密顿型蛙跳格式   总被引:15,自引:3,他引:15  
秦孟兆 《计算数学》1988,10(3):272-281
1.构造格式 考虑如下波动方程 u_(tt)=u_(xx) (1.1)的初边值问题,设其边界条件为周期的,即在此条件下,解具有周期性.(1.1)有二种namilton形式.一种是经典形式:  相似文献   

2.
We present NC-approximation schemes for a number of graph problems when restricted to geometric graphs including unit disk graphs and graphs drawn in a civilized manner. Our approximation schemes exhibit the same time versus performance trade-off as the best known approximation schemes for planar graphs. We also define the concept of λ-precision unit disk graphs and show that for such graphs the approximation schemes have a better time versus performance trade-off than the approximation schemes for arbitrary unit disk graphs. Moreover, compared to unit disk graphs, we show that for λ-precision unit disk graphs many more graph problems have efficient approximation schemes.Our NC-approximation schemes can also be extended to obtain efficient NC-approximation schemes for several PSPACE-hard problems on unit disk graphs specified using a restricted version of the hierarchical specification language of Bentley, Ottmann, and Widmayer. The approximation schemes for hierarchically specified unit disk graphs presented in this paper are among the first approximation schemes in the literature for natural PSPACE-hard optimization problems.  相似文献   

3.
The construction of additive operator-difference (splitting) schemes for the approximate solution Cauchy problem for the first-order evolutionary equation is considered. Unconditionally stable additive schemes are constructed on the basis of the Samarskii regularization principle for operator-difference schemes. In the case of arbitrary multicomponent splitting, these schemes belong to the class of additive full approximation schemes. Regularized additive operator-difference schemes for evolutionary problems are constructed without the assumption that the regularizing operator and the operator of the problem are commutable. Regularized additive schemes with double multiplicative perturbation of the additive terms of the problem’s operator are proposed. The possibility of using factorized multicomponent splitting schemes, which can be used for the approximate solution of steadystate problems (finite difference relaxation schemes) are discussed. Some possibilities of extending the proposed regularized additive schemes to other problems are considered.  相似文献   

4.
The isomorphism classes of association schemes with 18 and 19 vertices are classified. We obtain 95 isomorphism classes of association schemes with 18 vertices and denote the representatives of the isomorphism classes as subschemes of 7 association schemes. We obtain 7 isomorphism classes of association schemes with 19 vertices and six of them are cyclotomic schemes.  相似文献   

5.
A method for the construction of compact difference schemes approximating divergence differential equations is proposed. The schemes have an arbitrarily prescribed order of approximation on general stencils. It is shown that the construction of such schemes for partial differential equations is based on special compact schemes approximating ordinary differential equations in several independent functions. Necessary and sufficient conditions on the coefficients of these schemes with high order of approximation are obtained. Examples of reconstruction of compact difference schemes for partial differential equations with these schemes are given. It is shown that such compact difference schemes have the same order of accuracy both for classical approximations on smooth solutions and weak approximations on discontinuous solutions.  相似文献   

6.
The stability analysis of approximate solutions to unsteady problems for partial differential equations is usually based on the use of the canonical form of operator-difference schemes. Another possibility widely used in the analysis of methods for solving Cauchy problems for systems of ordinary differential equations is associated with the estimation of the norm of the transition operator from the current time level to a new one. The stability of operator-difference schemes for a first-order model operator-differential equation is discussed. Primary attention is given to the construction of additive schemes (splitting schemes) based on approximations of the transition operator. Specifically, classical factorized schemes, componentwise splitting schemes, and regularized operator-difference schemes are related to the use of a certain multiplicative transition operator. Additive averaged operator-difference schemes are based on an additive representation of the transition operator. The construction of second-order splitting schemes in time is discussed. Inhomogeneous additive operator-difference schemes are constructed in which various types of transition operators are used for individual splitting operators.  相似文献   

7.
If a symmetric association scheme of class two is realized as the symmetrization of a commutative association scheme, then it either admits a unique symmetrizable fission scheme of class three or four, or admits three fission schemes, two of which are class three and one is of class four. We investigate the classification problem for symmetrizable (commutative) association schemes of two-class symmetric association schemes. In particular, we give a classification of association schemes whose symmetrizations are obtained from completely multipartite strongly regular graphs in the notion of wreath product of two schemes. Also the cyclotomic schemes associated to Paley graphs and their symmetrizable fission schemes are discussed in terms of their character tables.  相似文献   

8.
In this paper, taking the 2+1-dimensional sine-Gordon equation as an example, we present the concatenating method to construct the multisymplectic schemes. The-method is to discretizee independently the PDEs in different directions with symplectic schemes, so that the multisymplectic schemes can be constructed by concatenating those symplectic schemes. By this method, we can construct multisymplectic schemes, including some widely used schemes with an accuracy of any order. The numerical simulation on the collisions of solitons are also proposed to illustrate the efficiency of the multisymplectic schemes.  相似文献   

9.
Hermite subdivision schemes have been studied by Merrien, Dyn, and Levin and they appear to be very different from subdivision schemes analyzed before since the rules depend on the subdivision level. As suggested by Dyn and Levin, it is possible to transform the initial scheme into a uniform stationary vector subdivision scheme which can be handled more easily.With this transformation, the study of convergence of Hermite subdivision schemes is reduced to that of vector stationary subdivision schemes. We propose a first criterion for C0-convergence for a large class of vector subdivision schemes. This gives a criterion for C1-convergence of Hermite subdivision schemes. It can be noticed that these schemes do not have to be interpolatory. We conclude by investigating spectral properties of Hermite schemes and other necessary/sufficient conditions of convergence.  相似文献   

10.
In this article, we address the problem of constructing high‐order implicit time schemes for wave equations. We consider two classes of one‐step A‐stable schemes adapted to linear Ordinary Differential Equation (ODE). The first class, which is not dissipative is based on the diagonal Padé approximant of exponential function. For this class, the obtained schemes have the same stability function as Gauss Runge‐Kutta (Gauss RK) schemes. They have the advantage to involve the solution of smaller linear systems at each time step compared to Gauss RK. The second class of schemes are constructed such that they require the inversion of a unique linear system several times at each time step like the Singly Diagonally Runge‐Kutta (SDIRK) schemes. While the first class of schemes is constructed for an arbitrary order of accuracy, the second‐class schemes is given up to order 12. The performance assessment we provide shows a very good level of accuracy for both classes of schemes, and the great interest of considering high‐order time schemes that are faster. The diagonal Padé schemes seem to be more accurate and more robust.  相似文献   

11.
Hanaki [A. Hanaki, Representations of association schemes and their factor schemes, Graphs Combin. 19 (2003) 195-201; A. Hanaki, Characters of association schemes and normal closed subsets, Graphs Combin. 19 (2003) 363-369] generalized many properties of characters of finite groups to characters of association schemes. In this paper we show that many of these properties also hold for table algebras. Our approach is not to generalize the proofs in [A. Hanaki, Representations of association schemes and their factor schemes, Graphs Combin. 19 (2003) 195-201; A. Hanaki, Characters of association schemes and normal closed subsets, Graphs Combin. 19 (2003) 363-369] to table algebras, but to prove many stronger properties, and then obtain results in [A. Hanaki, Representations of association schemes and their factor schemes, Graphs Combin. 19 (2003) 195-201; A. Hanaki, Characters of association schemes and normal closed subsets, Graphs Combin. 19 (2003) 363-369] as direct consequences.  相似文献   

12.
激波捕捉差分方法研究   总被引:1,自引:1,他引:0  
在迎风型格式和矢通量分裂技术的基础之上,对捕捉激波方法进行一种新的尝试.该方法首先对原始格式在特征方向上进行投影,然后用限制器对这些特征分量的变化幅值进行限制以抑止非物理波动,最后再把它转换成守恒形式,得到了基本上无振荡的激波捕捉格式.用该方法对两种迎风显示格式(二阶和三阶)和3种迎风紧致格式(三阶、五阶和七阶)进行处理,并在一维和二维的情况下进行了应用测试.通过与高阶WENO、MP、Compact-WENO等格式的比较,表明该方法在光滑捕捉激波的前提下仍有较高精度和分辨率.  相似文献   

13.
We present a conceptual framework within which we can analyze simple reward schemes for classifier systems. The framework consists of a set of classifiers, a learning mechanism, and a finite automaton environment that outputs payoff. We find that many reward schemes have negative biases that degrade system performance. We analyze bucket brigade schemes, which are subgoal reward schemes, and profit sharing schemes, which aren't. By contrasting these schemes, we hope to better understand the place of subgoal reward in learning and evolution. © 1998 John Wiley & Sons, Inc.  相似文献   

14.
New monotonicity-preserving hybrid schemes are proposed for multidimensional hyperbolic equations. They are convex combinations of high-order accurate central bicompact schemes and upwind schemes of first-order accuracy in time and space. The weighting coefficients in these combinations depend on the local difference between the solutions produced by the high- and low-order accurate schemes at the current space-time point. The bicompact schemes are third-order accurate in time, while having the fourth order of accuracy and the first difference order in space. At every time level, they can be solved by marching in each spatial variable without using spatial splitting. The upwind schemes have minimal dissipation among all monotone schemes constructed on a minimum space-time stencil. The hybrid schemes constructed has been successfully tested as applied to a number of two-dimensional gas dynamics benchmark problems.  相似文献   

15.
Bounds and Characterizations of Authentication/Secrecy Schemes   总被引:2,自引:0,他引:2  
We consider authentication/secrecy schemes from the information theoretic approach. We extend results on unconditionally secure authentication schemes and then consider unconditionally secure authentication schemes that offer perfect L-fold secrecy. We consider both ordered and unordered secrecy. We establish entropy bounds on the encoding rules for authentication schemes with these types of secrecy. We provide some combinatorial characterizations and constructions for authentication schemes having perfect L-fold secrecy that meet these bounds.  相似文献   

16.
In this paper, we construct an infinite series of 9-class association schemes from a refinement of the partition of Delsarte–Goethals codes by their Lee weights. The explicit expressions of the dual schemes are determined through direct manipulations of complicated exponential sums. As a byproduct, another three infinite families of association schemes are also obtained as fusion schemes and quotient schemes.  相似文献   

17.
In this paper we propose a family of well-balanced semi-implicit numerical schemes for hyperbolic conservation and balance laws. The basic idea of the proposed schemes lies in the combination of the finite volume WENO discretization with Roe’s solver and the strong stability preserving (SSP) time integration methods, which ensure the stability properties of the considered schemes [S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001) 89-112]. While standard WENO schemes typically use explicit time integration methods, in this paper we are combining WENO spatial discretization with optimal SSP singly diagonally implicit (SDIRK) methods developed in [L. Ferracina, M.N. Spijker, Strong stability of singly diagonally implicit Runge-Kutta methods, Appl. Numer. Math. 58 (2008) 1675-1686]. In this way the implicit WENO numerical schemes are obtained. In order to reduce the computational effort, the implicit part of the numerical scheme is linearized in time by taking into account the complete WENO reconstruction procedure. With the proposed linearization the new semi-implicit finite volume WENO schemes are designed.A detailed numerical investigation of the proposed numerical schemes is presented in the paper. More precisely, schemes are tested on one-dimensional linear scalar equation and on non-linear conservation law systems. Furthermore, well-balanced semi-implicit WENO schemes for balance laws with geometrical source terms are defined. Such schemes are then applied to the open channel flow equations. We prove that the defined numerical schemes maintain steady state solution of still water. The application of the new schemes to different open channel flow examples is shown.  相似文献   

18.
The spectral mimetic (SM) properties of operator-difference schemes for solving the Cauchy problem for first-order evolutionary equations concern the time evolution of individual harmonics of the solution. Keeping track of the spectral characteristics makes it possible to select more appropriate approximations with respect to time. Among two-level implicit schemes of improved accuracy based on Padé approximations, SM-stability holds for schemes based on polynomial approximations if the operator in an evolutionary equation is self-adjoint and for symmetric schemes if the operator is skew-symmetric. In this paper, additive schemes (also called splitting schemes) are constructed for evolutionary equations with general operators. These schemes are based on the extraction of the self-adjoint and skew-symmetric components of the corresponding operator.  相似文献   

19.
In this paper, various difference schemes with oblique stencils, i.e., schemes using different space grids at different time levels, are studied. Such schemes may be useful in solving boundary value problems with moving boundaries, regular grids of a non-standard structure (for example, triangular or cellular ones), and adaptive methods. To study the stability of finite difference schemes with oblique stencils, we analyze the first differential approximation and dispersion. We study stability conditions as constraints on the geometric locations of stencil elements with respect to characteristics of the equation. We compare our results with a geometric interpretation of the stability of some classical schemes. The paper also presents generalized oblique schemes for a quasilinear equation of transport and the results of numerical experiments with these schemes.  相似文献   

20.
In this work, a class of nonstandard finite difference (NSFD) schemes are proposed to approximate the solutions of a class of generalized convection–diffusion–reaction equations. First, in the case of no diffusion, two exact finite difference schemes are presented using the method of characteristics. Based on these two exact schemes, a class of exact schemes are presented by introducing a parameter α. Second, since the forms of these exact schemes are so complicated that they are not convenient to use, a class of NSFD schemes are derived from the exact schemes using numerical approximations. It follows that, under certain conditions about denominator function of time‐step sizes, these NSFD schemes are elementary stable and the solutions are positive and bounded. Third, by means of the Mickens' technique of subequations, a new class of implicit NSFD schemes are constructed for the full convection–diffusion–reaction equations. It is shown that, under certain parameters set, these NSFD schemes are capable of preserving the non‐negativity and boundedness of the analytical solutions. Finally, some numerical simulations are provided to verify the validity of our analytical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1288–1309, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号