首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Polyaniline (PANI)/MIL-88A(Fe) (Px@M88) composites were constructed through a simple one-pot hydrothermal method. The photocatalytic and photo-Fenton activities of Px@M88 composites toward reduction of Cr(VI) and degradation organic pollutants were explored by white light irradiation. PANI, as a conductive polymer, can improve MIL-88A(Fe)’s conductivity and the efficiency of photogenerated e–h+ pair separation. In the presence of H2O2, a photo-Fenton reaction occured to boost the degradation efficiency of organic pollutants like bisphenol A. In addition, P9@M88 showed excellent recycling and stability in cycling experiments. Finally, a possible reaction mechanism for photocatalytic degradation was proposed and verified by X-ray photoelectron spectroscopy and electron spin resonance determination and electrochemical characterizations.  相似文献   

2.
The photocatalytic reduction of toxic Cr(VI), to green Cr(III) by visible light, is highly required. Metal-organic frameworks have been waged more and more devotion in the field of environmental remediation. Diversification along with functionalization is still thought-provoking and crucial for the progress of metal-organic framework (MOF)-based high activity materials. Herein, a succession of UiO-66-NH2@ZnIn2S4 composites with varying amount of UiO-66-NH2 is prepared by the facile solvothermal technique. Synergetic effect for Cr(VI) reduction is assessed under the influence of visible light (λ > 420 nm). UiO-66-NH2 octahedron is detained by ZnIn2S4 nanoflakes. The obvious enhancement in activity is observed which is credited to the well-suited energy band construction and close interaction between the interface of ZnIn2S4 and UiO-66-NH2, which leads to effective transfer and separation of photogenerated carriers. Synergistic effect could be evidently understood from the PL and UV -spectroscopy, after molding into heterostructure of UiO-66-NH2@ZnIn2S4. In addition, UiO-66-NH2@ZnIn2S4 composites exhibited good stability in photocatalytic reduction. Consequently, this UiO-66-NH2 constructed composite has high potential in the field of environmental remediation.  相似文献   

3.
The RP/g-C3N4 heterojunction photocatalyst was fabricated by a facile heat treatment strategy. The obtained composite has excellent light harvesting ability and charge separation performance. Compared to single RP and g-C3N4, the 50%-RP/g-C3N4 exhibited enhanced photocatalytic activity for simultaneously removing Cr(VI) and RhB, and the removal rates can reach 92% and 99% in 25 min, respectively. The enhanced mechanism was revealed by active species capturing experiments, showing that electrons can reduce Cr(VI) and produce O2 in air and that holes can directly oxidize the dyes. The coexistence of Cr(VI) and RhB will lead to a synergistic improvement of Cr(VI) reduction and RhB degradation due to rapid surface reactions. This further improves the charge separation except for the heterojunction effect. In addition, the COD analysis demonstrates that organic dyes are mainly degraded into CO2, H2O and some intermediates.  相似文献   

4.
A novel GO modified g-C3N4 nanosheets/flower-like BiOBr hybrid photocatalyst is fabricated by a facile method. The characterization results reveal that wrinkled GO is deposited between g-C3N4 nanosheets and flower-like BiOBr forming a Z-scheme heterojunction. As a mediator, plicate GO plays a positive role in prompting photogenerated electrons transferring through its sizeable 2D/2D contact surface area. The g-C3N4/GO/BiOBr hybrid displays a superior photocatalytic ability to g-C3N4 and BiOBr in photodegrading tetracycline (TC), whose removal efficiency could reach 96% within 2 h. Besides, g-C3N4/GO/BiOBr composite can reduce Cr(VI), and simultaneously treat TC and Cr(VI) combination contaminant under the visible light. The g-C3N4/GO/BiOBr ternary composite also exhibits satisfactory stability and reusability after four cycling experiments. Further, a feasible mechanism related to the photocatalytic process of g-C3N4/GO/BiOBr is put forward. This study offers a ternary hybrid photocatalyst with eco-friendliness and hopeful application in water pollution.  相似文献   

5.
《中国化学快报》2020,31(10):2747-2751
Graphitic carbon nitride (g-C3N4)-based materials are regarded as one of the most potential photocatalysts for utilizing solar energy. In this work, we reported a facile one step in-situ hydrothermal-roasting method for preparing honeycomb-like g-C3N4/CeO2 nanosheets with abundant oxygen vacancies (g-C3N4/CeO2-x). The hydrothermal-roasting and incomplete-sealed state can (i) generate an in-situ reducing atmosphere (CO, N2, NH3) to tune the concentration of oxygen vacancies in CeO2; (ii) beneficial to prevent continuous growth of g-C3N4 and results in honeycomb-like g-C3N4/CeO2-x hybrid nanosheets. What is more, the g-C3N4/CeO2-x photocatalyst exhibited extended photoresponse range, increased specific surface area and obviously enhanced separation efficiency of photogenerated electron-hole pairs. As a proof-of-concept application, the optimized g-C3N4/CeO2-x nanosheets could achieve 98% removal efficiency for Cr(VI) under visible light irradiation (λ ≥ 420 nm) within 2.5 h, which is significantly better than those of pure g-C3N4 and CeO2. This work provides a new idea for more rationally designing and constructing g-C3N4-based catalysts for efficient extended photochemical application.  相似文献   

6.
Bifunctional TiO2 photocatalysts co-doped with nitrogen and sulfur were prepared by the controlled thermal decomposition of ammonium titanyl sulfate precursor. They have both photocatalytic activity and Br?nsted acidity, and thus are active in the photoreduction of Cr(VI) under solar light irradiation without the addition of acids. The activity is superior to that of Degussa P25 in the acidified suspension at the same pH adjusted by H2SO4.  相似文献   

7.
Ion exchange chromatography (IEC) using a bi-functional column (quaternary ammonium and sulfonate groups), followed by post-column reaction (PCR) with 1-(2-pyridylazo)-2-naphthol (PAN), was used to separate and quantitate Cu(II), Ni(II), Zn(II), Co(II), Cd(II), Mn(II) and Hg(II) at low concentration levels. IEC-PCR separation was achieved within 14 min using the mobile phase containing 3 mmol L− 1 2,6-pyridinedicarboxylic acid (PDCA) and 3 mmol L− 1 oxalate at pH 12.5. Effects of pH as well as PAN, detergent and chloride ion concentrations during post-column reaction on detector response were examined. Detection limits were less than 4.5 μg L− 1 for all metals except Hg(II) (19 μg L− 1) using spectrophotometric measurements at 550 nm. Analytical validations showed good linearity for detection up to 6.0 mg L− 1, with R2 higher than 0.99. Precisions based on retention time evaluation for intra-day and inter-day measurements with the relative standard deviation (RSD) were less than 2.9% and 3.6%, respectively. The method gave good accuracy with the recoveries ranged from 80.5 to 105% for all metal ions studied. The proposed method was applied to the analysis of metal ions in environmental samples (leachate, soil and sediment) in Northeastern Thailand. The results were in good agreement with atomic spectroscopic measurements on the same samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号