首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we study a reaction–diffusion–advection predator–prey model in a river. The existence of predator-invasion traveling wave solutions and prey-spread traveling wave solutions in the upstream and downstream directions is established and the corresponding minimal wave speeds are obtained. While some crucial improvements in theoretical methods have been established, the proofs of the existence and nonexistence of such traveling waves are based on Schauder’s fixed-point theorem, LaSalle’s invariance principle and Laplace transform. Based on theoretical results, we investigate the effect of the hydrological and biological factors on minimal wave speeds and hence on the spread of the prey and the invasion of the predator in the river. The linear determinacy of the predator–prey Lotka–Volterra system is compared with nonlinear determinacy of the competitive Lotka–Volterra system to investigate the mechanics of linear and nonlinear determinacy.  相似文献   

2.
Abstract A continuous reaction–diffusion model is developed for the invasive Argentine ant population within a preserve in northern California. The model is a second‐order partial differential equation incorporating a logistic growth term. The dispersal distance traveled during the reproductive process of budding is used to estimate the diffusion coefficient. The model has two homogeneous steady states, one occurring at the propagation front where the Argentine ant population does not yet exist and one occurring where the population has reached carrying capacity. The traveling wave solutions of the model depict the population density for a given time and location. Using current research, parameter values for the model are estimated and a traveling wave solution for the average parameter values is numerically demonstrated.  相似文献   

3.
We construct analytical solutions for a system composed of a reaction–diffusion equation coupled with a purely diffusive equation. The question is to know if the traveling wave solutions of the reaction–diffusion equation can generate a traveling wave for the diffusion equation. Our motivation comes from the calcic wave, generated after fertilization within the egg cell endoplasmic reticulum, and propagating within the egg cell. We consider both the monostable (Fisher–KPP type) and bistable cases. We use a piecewise linear reaction term so as to build explicit solutions, which leads us to compute exponential tails whose exponents are roots of second-, third-, or fourth-order polynomials. These raise conditions on the coefficients for existence of a traveling wave of the diffusion equation. The question of positivity and monotonicity is only partially answered.  相似文献   

4.
The parameter space of the two dimensional Rulkov chaotic neuron model is taken into account by using the qualitative analysis, the co-dimension 2 bifurcation, the center manifold theorem, and the normal form. The goal is intended to clarify analytically different dynamics and firing regimes of a single neuron in a two dimensional parameter space. Our research demonstrates the origin that there exist very rich nonlinear dynamics and complex biological firing regimes lies in different domains and their boundary curves in the two dimensional parameter plane. We present the parameter domains of fixed points, the saddle-node bifurcation, the supercritical/subcritical Neimark–Sacker bifurcation, stability conditions of non hyperbolic fixed points and quasiperiodic solutions. Based on these parameter domains, it is easy to know that the Rulkov chaotic neuron model can produce what kinds of firing regimes as well as their transition mechanisms. These results are very useful for building-up a large-scale neuron network with different biological functional roles and cognitive activities, especially in establishing some specific neuron network models of neurological diseases.  相似文献   

5.
We study invasion fronts and spreading speeds in two component reaction–diffusion systems. Using a variation of Lin's method, we construct traveling front solutions and show the existence of a bifurcation to locked fronts where both components invade at the same speed. Expansions of the wave speed as a function of the diffusion constant of one species are obtained. The bifurcation can be sub or super-critical depending on whether the locked fronts exist for parameter values above or below the bifurcation value. Interestingly, in the sub-critical case numerical simulations reveal that the spreading speed of the PDE system does not depend continuously on the coefficient of diffusion.  相似文献   

6.
In this paper, the traveling wave problem for a two-species competition reaction–diffusion–chemotaxis Lotka–Volterra system is investigated. Upper and lower solutions method and fixed point theory are employed to show the existence of traveling wave solutions connecting the coexistence constant steady state with zero state for all large enough wave speed c, and conversely, when c is small, we prove there is no traveling wave solution.  相似文献   

7.
We discuss traveling wave solutions to the Yukawa equations, a system of nonlinear partial differential equations which has applications to meson–nucleon interactions. The Yukawa equations are converted to a six-dimensional dynamical system, which is then studied for various values of the wave speed and mass parameter. The stability of the solutions is discussed, and the methods of competitive modes is used to describe parameter regimes for which chaotic behaviors may appear. Numerical solutions are employed to better demonstrate the dependence of traveling wave solutions on the physical parameters in the Yukawa model. We find a variety of interesting behaviors in the system, a few of which we demonstrate graphically, which depend upon the relative strength of the mass parameter to the wave speed as well as the initial data.  相似文献   

8.
A class of coupled cell–bulk ODE–PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius \(\epsilon \ll 1\) are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell–bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE–PDE cell–bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell–bulk models is shown to be qualitatively rather similar to the linear stability analysis of localized spot patterns for activator–inhibitor reaction–diffusion systems in the limit of long-range inhibition and short-range activation.  相似文献   

9.
This paper is concerned with the existence of traveling wave solutions for delayed reaction diffusion systems which contain the competition diffusion systems with time lags. By using a cross iteration scheme, we reduce the existence of traveling wave solutions to the existence of a pair of admissible upper and lower solutions, which also provides a constructive process of the traveling wave solutions. To illustrate our conclusion, we consider a delayed diffusion system with the Gilpin–Ayala type nonlinearity and establish the existence of its traveling wave solutions, which cannot be answered by the existing results.  相似文献   

10.
We derive the Whitham modulation equations for the Zakharov–Kuznetsov equation via a multiple scales expansion and averaging two conservation laws over one oscillation period of its periodic traveling wave solutions. We then use the Whitham modulation equations to study the transverse stability of the periodic traveling wave solutions. We find that all periodic solutions traveling along the first spatial coordinate are linearly unstable with respect to purely transversal perturbations, and we obtain an explicit expression for the growth rate of perturbations in the long wave limit. We validate these predictions by linearizing the equation around its periodic solutions and solving the resulting eigenvalue problem numerically. We also calculate the growth rate of the solitary waves analytically. The predictions of Whitham modulation theory are in excellent agreement with both of these approaches. Finally, we generalize the stability analysis to periodic waves traveling in arbitrary directions and to perturbations that are not purely transversal, and we determine the resulting domains of stability and instability.  相似文献   

11.
This paper deals with the existence of traveling wave solutions for n‐dimensional delayed reaction–diffusion systems. By using Schauder's fixed point theorem, we establish the existence result of a traveling wave solution connecting two steady states by constructing a pair of upper–lower solutions that are easy to construct. As an application, we apply our main results to a four‐dimensional delayed predator–prey system and obtain the existence of traveling wave solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we employ two recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a recently-derived integrable family of generalized Camassa–Holm (GCH) equations. A recent, novel application of phase-plane analysis is employed to analyze the singular traveling wave equations of three of the GCH NLPDEs, i.e. the possible non-smooth peakon and cuspon solutions. One of the considered GCH equations supports both solitary (peakon) and periodic (cuspon) cusp waves in different parameter regimes. The second equation does not support singular traveling waves and the last one supports four-segmented, non-smooth M-wave solutions.Moreover, smooth traveling waves of the three GCH equations are considered. Here, we use a recent technique to derive convergent multi-infinite series solutions for the homoclinic orbits of their traveling-wave equations, corresponding to pulse (kink or shock) solutions respectively of the original PDEs. We perform many numerical tests in different parameter regime to pinpoint real saddle equilibrium points of the corresponding GCH equations, as well as ensure simultaneous convergence and continuity of the multi-infinite series solutions for the homoclinic orbits anchored by these saddle points. Unlike the majority of unaccelerated convergent series, high accuracy is attained with relatively few terms. We also show the traveling wave nature of these pulse and front solutions to the GCH NLPDEs.  相似文献   

13.
In this paper, we study a nonlocal diffusion equation with a general diffusion kernel and delayed nonlinearity, and obtain the existence, nonexistence and uniqueness of the regular traveling wave solutions for this nonlocal diffusion equation. As an application of the results, we reconsider some models arising from population dynamics, epidemiology and neural network. It is shown that there exist regular traveling wave solutions for these models, respectively. This generalized and improved some results in literatures.  相似文献   

14.
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction–diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of \(c\ge c^*\) for the degenerate reaction–diffusion equation without delay, where \(c^*>0\) is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay \(\tau >0\). Furthermore, we prove the global existence and uniqueness of \(C^{\alpha ,\beta }\)-solution to the time-delayed degenerate reaction–diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted \(L^1\)-space. The exponential convergence rate is also derived.  相似文献   

15.
钟吉玉  李晓培 《数学杂志》2014,34(6):1059-1072
本文研究了小展弦比波的Green-Naghdi渐进模型. 利用平面自治系统的稳定性分析方法, 在不同的参数条件下, 讨论了它的行波系统的分岔并且给出了对应的相图, 得到了光滑周期波解, 广义扭波解, 广义反扭波解, 广义紧波解, 周期尖波解, 孤波解和孤立尖波解的精确表达式. 进一步, 通过数学软件Maple模拟了这些解.  相似文献   

16.
We prove the existence of a traveling wave solution for a boundary reaction–diffusion equation when the reaction term is the combustion nonlinearity with ignition temperature. A key role in the proof is plaid by an explicit formula for traveling wave solutions of a free boundary problem obtained as singular limit for the reaction–diffusion equation (the so-called high energy activation energy limit). This explicit formula, which is interesting in itself, also allows us to get an estimate on the decay at infinity of the traveling wave (which turns out to be faster than the usual exponential decay).  相似文献   

17.
The FitzHugh-Nagumo (FHN) equations are model equations for nerve cell behavior. They support traveling wave solutions which depend on certain parameters. In this paper, a two parameter study of rotating wave solutions (i.e. periodic wavetrains) are considered. These solutions arise from bifurcations of stationary equilibria. The local bifurcation equations are analyzed to determine bifurcation directions as functions of the parameters. In addition, dependence on parameters is computed by numerical continuation and properties of the rotating wave solutions are summarized in parameter space. Finally, some of the biological implications are discussed.  相似文献   

18.
19.
We obtain closed-form exact solutions to the 1 + 1 Born–Infeld equation arising in nonlinear electrodynamics. In particular, we obtain general traveling wave solutions of one wave variable, solutions of two wave variables, similarity solutions, multiplicatively separable solutions, and additively separable solutions. Then, putting the Born–Infeld model into correspondence with the minimal surface equation using a Wick rotation, we are able to construct complex helicoid solutions, transformed catenoid solutions, and complex analogues of Scherk’s first and second surfaces. Some of the obtained solutions are new, whereas others are generalizations of solutions in the literature. These exact solutions demonstrate the fact that solutions to the Born–Infeld model can exhibit a variety of behaviors. Exploiting the integrability of the Born–Infeld equation, the solutions are constructed elegantly, without the need for complicated analytical algorithms.  相似文献   

20.
J. X. Xin 《偏微分方程通讯》2013,38(11-12):1889-1899
We show that if the initial condition is a small perturbation of a traveling wave solution of the bistable reaction–diffusion equation in, then the solution of the initial value problem converges to the traveling wave solutions in Hm(Rn) as t goes to infinity with rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号