首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammation plays an important role in different chronic diseases. Brominated indoles derived from the Australian marine mollusk Dicathais orbita (D. orbita) are of interest for their anti-inflammatory properties. This study evaluates the binding mechanism and potentiality of several brominated indoles (tyrindoxyl sulfate, tyrindoleninone, 6-bromoisatin, and 6,6′-dibromoindirubin) against inflammatory mediators cyclooxygenases-1/2 (COX-1/2) using molecular docking, followed by molecular dynamics simulation, along with physicochemical, drug-likeness, pharmacokinetic (pk), and toxicokinetic (tk) properties. Molecular docking identified that these indole compounds are anchored, with the main amino acid residues, positioned in the binding pocket of the COX-1/2, required for selective inhibition. Moreover, the molecular dynamics simulation based on root mean square deviation (RMSD), radius of gyration (Rg), solvent accessible surface area (SASA), and root mean square fluctuation (RMSF) analyses showed that these natural brominated molecules transit rapidly to a progressive constant configuration during binding with COX-1/2 and seem to accomplish a consistent dynamic behavior by maintaining conformational stability and compactness. The results were comparable to the Food and Drug Administration (FDA)-approved selective COX inhibitor, aspirin. Furthermore, the free energy of binding for the compounds assessed by molecular mechanics–Poisson–Boltzmann surface area (MM–PBSA) confirmed the binding capacity of indoles towards COX-1/2, with suitable binding energy values except for the polar precursor tyrindoxyl sulfate (with COX-1). The physicochemical and drug-likeness analysis showed zero violations of Lipinski’s rule, and the compounds are predicted to have excellent pharmacokinetic profiles. These indoles are projected to be non-mutagenic and free from hepatotoxicity, with no inhibition of human ether-a-go–go gene (hERG) I inhibitors, and the oral acute toxicity LD50 in rats is predicted to be similar or lower than aspirin. Overall, this work has identified a plausible mechanism for selective COX inhibition by natural marine indoles as potential therapeutic candidates for the mitigation of inflammation.  相似文献   

2.
In this study, we used oxazinethione as a perfect precursor to synthesize new pyrimidine and pyrazole derivatives with potent biological activities. Biological activities were determined for all compounds against A. flavus, E. coli, S. aureus, and F. moniliform. Compounds 3, 4a-b, and 5 exhibited higher activities toward A. flavus, E. coli, S. aureus, and F. moniliform; this was indicated through the MIC (minimum inhibitory concentration). At the same time, anticancer activities were determined through four cell lines, Ovcar-3, Hela, MCF-7, and LCC-MMk. The results obtained indicated that compound 5 was the most potent compound for both cell lines. Molecular docking was studied by the MOE (molecular operating environment). The in silico ADME of compounds 2 and 5 showed good pharmacokinetic properties. The present research strengthens the applicability of these compounds as encouraging anticancer and antibacterial drugs. Moreover, JAGUAR module MD simulations were carried out at about 100 ns. In addition, spectroscopic studies were carried out to establish the reactions of the synthesized structure derivatives.  相似文献   

3.
Cancer is characterized by abnormal growth of cells. Targeting ubiquitin proteins in the discovery of new anticancer therapeutics is an attractive strategy. The present study uses the structure-based drug discovery methods to identify new lead structures, which are selective to the putative ubiquitin-conjugating enzyme E2N-like (UBE2NL). The 3D structure of the UBE2NL was evaluated using homology modeling techniques. The model was validated using standard in silico methods. The hydrophobic pocket of UBE2NL that aids in binding with its natural receptor ubiquitin-conjugating enzyme E2 variant (UBE2V) was identified through protein-protein docking study. The binding site region of the UBE2NL was identified using active site prediction tools. The binding site of UBE2NL which is responsible for cancer cell progression is considered for docking study. Virtual screening study with the small molecular structural database was carried out against the active site of UBE2NL. The ligand molecules that have shown affinity towards UBE2NL were considered for ADME prediction studies. The ligand molecules that obey the Lipinski’s rule of five and Jorgensen’s rule of three pharmacokinetic properties like human oral absorption etc. are prioritized. The resultant ligand molecules can be considered for the development of potent UBE2NL enzyme inhibitors for cancer therapy.  相似文献   

4.
The wax apple, Syzygium samarangense, is widely used in traditional medicine. We have previously described a plethora of biological activities from its leaf extract. These include antioxidant, anti-inflammatory, antiulcer, antitrypanosomal and hepatoprotective effects. Here, we explored the antidiabetic activities from the bioactive leaf extract in silico on two crucial receptors involved in the management of diabetes disease namely peroxisome proliferator activated receptor gamma (PPAR?) and glucagon like peptide-1 (GLP-1) and in vivo against streptozotocin-induced diabetic rats. Altogether, 457 secondary metabolites belonging to 10 classes (phenolic acids (86 compounds), flavonoids (139 compounds), anthocyanins (61 compounds), alkylphenols (17 compounds), chalcone (15 compounds), stilbenes (9 compounds), lignans (29 compounds), tannins (29 compounds), tyrosols (13 compounds), and terpenes and others (59 compounds), were docked into the active site of PPAR? and GLP-1 receptors. From the PDB codes used for each receptor, the co-crystallized ligand was extracted and docked together with a known reference ligand. This was done simultaneously with docking the extract’s compounds to serve as references for comparative purposes. Out of the docked candidates, the top 30 compounds affording the best docking scores were compiled for further inspection and they appeared to exhibit better scores than the respective co-crystallized and reference ligands, highlighting the antidiabetic potential of the tested extract. Nine compounds exhibited highly negative scores on both receptors, demonstrating their high probability of being potent antidiabetic agents through forming stable ligand-receptor complexes. These activities were also confirmed in STZ diabetic rats where the extract reduced the elevated levels of serum glucose and lipid peroxides and increased the declined serum insulin hormone level. Taking all together, S. samarangense can be a potential candidate for further investigations for the treatment of numerous health disorders including diabetes.  相似文献   

5.
Depression and anxiety are major mental health problems in all parts of the world. These illnesses are associated with a number of risk factors, including oxidative stress. Psychotropic drugs of a chemical nature have demonstrated several side effects that elevated the impact of those illnesses. Faced with this situation, natural products appear to be a promising alternative. The aim of this study was to evaluate the anxiolytic and antidepressant effects of the Petroselinum sativum polyphenols in vivo, as well as its correlated antioxidant properties in vitro. Anxiolytic activity of the extract (50 and 100 mg/kg) was evaluated using the open field and the light-dark chamber tests, while the antidepressant activity was evaluated using the forced swimming test. The antioxidant activity of the extract was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical test and the FRAP (iron-reducing capacity) test. The phenolic extract showed very powerful anxiolytic and antidepressant-like effects, especially at a dose of 100 mg/kg, decreasing the depressive behavior in mice (decreased immobility time) and also the anxiolytic behavior (tendency for discovery in the center and illuminated areas) better even than those of paroxetine and bromazepam (classic drugs) concomitant with those results the extract also showed an important antioxidant capacity. These preliminary results suggest that Petroselinum sativum exhibits anxiolytic and antidepressant potential for use as a complement or independent phytomedicine to treat depression and anxiety.  相似文献   

6.
Transthyretin (TTR) is a homotetrameric plasma protein associated with human amyloid diseases. Although Tafamidis has been recently approved for the treatment of TTR familial amyloid polyneuropathy (FAP), there is still a need for more effective drugs in the treatment of TTR amyloidosis diseases. In this study, a computer‐aided approach combining molecular docking, virtual screening and molecular dynamics (MD) simulations was employed to identify potent TTR amyloidosis inhibitors from National Cancer Institute (NCI), Maybridge and Asdi databases. A receptor‐specific scoring function was also developed using comparative binding energy (COMBINE) method to accurately predict the inhibitory activities for the selected compounds during virtual screening. The developed receptor‐specific scoring function demonstrated good predictive ability by yielding strong correlation coefficients between experimental activities and estimated activities for 32 training set and 9 test set compounds, respectively. Moreover, it was successfully applied to rank the candidate compounds from structure‐based virtual screening. Finally, three compounds (NSC220163, MFCD00276817 and SPB06319) were identified as potential leads, which exhibited higher predicted inhibitory activities and higher binding affinities in comparison to the Tafamidis. Our results further suggest that halogen bonding interaction plays a crucial role in stabilizing the TTR‐inhibitor complex. These results indicate that our computational approach could effectively discover more potent TTR amyloidosis inhibitors, which can be further validate by in vitro and in vivo biological tests.  相似文献   

7.
Immunoglobin E (IgE) binds to the high-affinity IgE receptor on mast cells and basofils and causes release of inflammatory compounds that leads to allergic diseases. Inhibition of the ligand binding could lead to blockade of the release of inflammation causing compounds and thus alleviate asthma and other allergic diseases. Natural product screening and bioassay-guided isolation of an extract of Aspergillus sp. led to the identification of three novel 11-membered macrocyclic biphenyl ether lactones, aspercyclides A-C. Aspercyclide A inhibited the IgE binding with an IC50 of 200 μM. The isolation, structure elucidation, absolute stereochemistry, and the binding activities of these compounds are described.  相似文献   

8.
In an attempt to rationalize the search for new potential anti-inflammatory compounds on the COX-2 enzyme, we carried out an in silico protocol that successfully combines the prediction of physicochemical and pharmacokinetic properties, molecular docking, molecular dynamic simulation, and free energy calculation. Starting from a small library of compounds synthesized previously, it was found that 70% of the compounds analyzed satisfy with the associated values to physicochemical principles as key evaluation parameters for the drug-likeness; all the compounds presented good gastrointestinal absorption and cerebral permeability and they showed an interaction with the Arg 106 residue of the COX-2 isoenzyme. Finally, it was obtained that compound 3ab has a binding mode, binding energy, and stability in the active site of COX-2 like the reference drug celecoxib, suggesting that this compound could become a powerful candidate in the inhibition of the COX-2 enzyme. In addition, we realized the crystallographic analysis of compounds 3j, 3r, and 3t defining the crystal parameters and the Packing interactions.  相似文献   

9.
This study evaluated the effect of Mucuna pruriens (MP) administration on neuroinflammation and behavioral and murinometric parameters in obese rats. Proximate composition, oligosaccharide and phenolic compound profile of MP were determined. Wistar adult male rats were randomized into healthy (HG) and obese group (OG). The HG consumed a control chow diet while OG consumed a cafeteria diet for eight weeks. Then, they were subdivided into: Healthy (HG); Healthy with MP administration (HGMP); Obese (OG); Obese with MP administration (OGMP), with the consumption of the respective diets remaining for another eight weeks, in addition to gavage with MP extract to supplemented groups (750 mg/kg weight). MP presented a composition rich in proteins and phenolic compounds, especially catechin, in addition to 1-kestose and levodopa. Supplementation reduced food intake, body weight, and thoracic and abdominal circumferences in obese rats. MP showed anxiolytic and antidepressant effects and reduced morphological damage and expression of interleukin 6 in the hippocampus of obese rats. MP treatment showed satietogenic, slimming, anxiolytic and antidepressant effects, besides to minimizing hippocampal neuroinflammation in obese rats. Our results demonstrated the potential anti-obesity of MP which are probably related to the high content of bioactive compounds present in this plant extract.  相似文献   

10.
Background: Neurotic disturbances, anxiety, neurosis-like disorders, and stress situations are widespread. Benzodiazepine tranquillizers have been found to be among the most effective antianxiety drugs. The pharmacological action of benzodiazepines is due to their interaction with the supra-molecular membrane GABA-a-benzodiazepine receptor complex, linked to the Cl-ionophore. Benzodiazepines enhance GABA-ergic transmission and this has led to a study of the role of GABA in anxiety. The search for anxiolytics and anticonvulsive agents has involved glutamate-ergic, 5HT-ergic substances and neuropeptides. However, each of these well-known anxiolytics, anticonvulsants and cognition enhancers (nootropics) has repeatedly been reported to have many adverse side effects, therefore there is an urgent need to search for new drugs able to restore damaged cognitive functions without causing significant adverse reactions. Objective: Considering the relevance of epilepsy diffusion in the world, we have addressed our attention to the discovery of new drugs in this field Thus our aim is the synthesis and study of new compounds with antiepileptic (anticonvulsant) and not only, activity. Methods: For the synthesis of compounds classical organic methods were used and developed. For the evaluation of biological activity some anticonvulsant and psychotropic methods were used. Results: As a result of multistep reactions 26 new, five-membered heterocyclic systems were obtained. PASS prediction of anticonvulsant activity was performed for the whole set of the designed molecules and probability to be active Pa values were ranging from 0.275 to 0.43. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures, anti-thiosemicarbazides effect as well as some psychotropic effect. The biological assays evidenced that some of the studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of compounds is low and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity it was found that the selected compounds have an activating behavior and anxiolytic effects on the models of “open field” and “elevated plus maze” (EPM). The data obtained indicate the anxiolytic (anti-anxiety) activity of the derivatives of pyrimidines, especially pronounced in compounds 6n, 6b, and 7c. The studied compounds increase the latent time of first immobilization on the model of “forced swimming” (FST) and exhibit some antidepressant effect similarly to diazepam. Docking studies revealed that compound 6k bound tightly in the active site of GABAA receptor with a value of the scoring function that estimates free energy of binding (ΔG) at −7.95 kcal/mol, while compound 6n showed the best docking score and seems to be dual inhibitor of SERT transporter as well as 5-HT1A receptor. Conclusions: Тhe selected compounds have an anticonvulsant, activating behavior and anxiolytic effects, at the same time exhibit some antidepressant effect.  相似文献   

11.
Dental caries, a global oral health concern, is a biofilm-mediated disease. Streptococcus mutans, the most prevalent oral microbiota, produces extracellular enzymes, including glycosyltransferases responsible for sucrose polymerization. In bacterial communities, the biofilm matrix confers resistance to host immune responses and antibiotics. Thus, in cases of chronic dental caries, inhibiting bacterial biofilm assembly should prevent demineralization of tooth enamel, thereby preventing tooth decay. A high throughput screening was performed in the present study to identify small molecule inhibitors of S. mutans glycosyltransferases. Multiple pharmacophore models were developed, validated with multiple datasets, and used for virtual screening against large chemical databases. Over 3000 drug-like hits were obtained that were analyzed to explore their binding mode. Finally, six compounds that showed good binding affinities were further analyzed for ADME (absorption, distribution, metabolism, and excretion) properties. The obtained in silico hits were evaluated for in vitro biofilm formation. The compounds displayed excellent antibiofilm activities with minimum inhibitory concentration (MIC) values of 15.26–250 µg/mL.  相似文献   

12.
《Arabian Journal of Chemistry》2020,13(12):9047-9057
A Novel class of 1,4-disubstituted 1,2,3-triazoles have been synthesized in good to excellent yields via Cu(I) accelerated azide-alkyne click chemistry reaction strategy. The newly synthesized compounds were assessed for their in vitro antimicrobial activity against five Gram-positive, seven Gram-negative bacteria and three fungi. Most of the synthesized compounds displayed significant activity against the tested Gram-positive and Gram-negative bacteria. Molecular docking study revealed that all docked compounds are bound efficiently with the active site of Topoisomerase IV (4EMV) receptor with the observed the free energy of binding from −7.79 to −9.44 kcal/mol. Interestingly, compound 13a forms four hydrogen bonds and displayed high binding energy (−9.44 kcal/mol) with the Topoisomerase IV (4EMV) receptor which correlated with their in vitro antimicrobial assays.  相似文献   

13.
A series of cyclic imides bearing a omega-(4-aryl and 4-heteroaryl-1-piperazinyl)alkyl moieties was synthesized and tested in vivo for anxiolytic activity. The in vitro binding affinities of these compounds were also examined for 5-HT1A receptor sites. Structure-activity relationships within these series are discussed. One of these compounds, (1R*,2S*,-3R*,4S*)-N-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-2,3- bicyclo[2.2.1]heptanedicarboximide (1: tandospirone), was found to be equipotent with buspirone in its anxiolytic activity and more anxio-selective than buspirone and diazepam. Tandospirone (1) is currently undergoing clinical evaluation as a selective anxiolytic agent.  相似文献   

14.
15.
将青风藤中23个有效化学成分与COX-2酶对接,有四个化合物具有较低的结合自由能,其中以青藤碱为最低.进一步将这四个化合物与COX-1酶对接,发现这四个化合物与COX-1酶结合能力较弱,预示这四个化合物具有选择性抑制COX-2酶的能力.对青藤碱和COX-2以及COX-1酶的结合模式进行分析,发现青藤碱主要结合于COX-2酶的S′口袋,而COX-1酶的S′结合口袋中第523号残基由COX-2酶中的Val523变成了体积较大的Ile523,使得COX-1酶的S′结合口袋相对COX-2酶的结合口袋要小,从而导致青藤碱分子不能进入COX-1酶S′结合口袋.这成功解释了青藤碱选择性抑制COX-2酶的原因,与早期有关文献报道的实验结果相吻合,充分表明了对接模型的合理性,青藤碱等化合物可作为设计COX-2酶选择性抑制剂的先导化合物.  相似文献   

16.
The aim of this study was to investigate the chemical composition, antioxidant and enzyme inhibitory activities of methanol (MeOH) extracts from Onosma bourgaei (Boiss.) and O. trachytricha (Boiss.). In addition, the interactions between phytochemicals found in extracts in high amounts and the target enzymes in question were revealed at the molecular scale by performing in silico molecular docking simulations. While the total amount of flavonoid compounds was higher in O. bourgaei, O. trachytricha was richer in phenolics. Chromatographic analysis showed that the major compounds of the extracts were luteolin 7-glucoside, apigenin 7-glucoside and rosmarinic acid. With the exception of the ferrous ion chelating assay, O. trachytricha exhibited higher antioxidant activity than O. bourgaei. O. bourgaei exhibited also slightly higher activity on digestive enzymes. The inhibitory activities of the Onosma species on tyrosinase were almost equal. In addition, the inhibitory activities of the extracts on acetylcholinesterase (AChE) were stronger than the activity on butyrylcholinesterase (BChE). Molecular docking simulations revealed that luteolin 7-glucoside and apigenin 7-glucoside have particularly strong binding affinities against ChEs, tyrosinase, α-amylase and α-glucosidase when compared with co-crystallized inhibitors. Therefore, it was concluded that the compounds in question could act as effective inhibitors on cholinesterases, tyrosinase and digestive enzymes.  相似文献   

17.
We present here the Energetic pharmacophore model representing complementary features of the 1,2,3,4-tetrahydropyrimidine for selective cyclooxygenase-2 (COX-2) inhibition. For the development of pharmacophore hypothesis, a total of 43 previously reported compounds were docked on active site of COX-2 enzyme. The generated pharmacophore features were ranked using energetic terms of Glide XP docking for 1,2,3,4-tetrahydropyrimidine scaffold to optimize its structure requirement for COX-2 inhibition. The thirty new 4,5,6-triphenyl-1,2,3,4-tetrahydropyrimidine derivatives were synthesized and assessed for selective COX-2 inhibitory activity. Two compounds 4B1 and 4B11 were found to be potent and selective COX-2 inhibitors. The molecular docking studies revealed that the newly synthesized compounds can be docked into COX-2 binding site and also provide the molecular basis for their activity.  相似文献   

18.
ATP dependent ParE enzyme is as an attractive target for the development of antibacterial agents. Atom based 3D-QSAR model AADHR.187 was developed based on the thirty eight Escherichia coli ParE inhibitors. The generated model showed statistically significant coefficient of determinations for the training (R2 = 0.985) and test (R2 = 0.86) sets. The cross-validated correlation coefficient (q2) was 0.976. The utility of the generated model was validated by the enrichment study. The model was also validated with structurally diverse external test set of ten compounds. Contour plot analysis of the generated model unveiled the chemical features necessary for the E. coli ParE enzyme inhibition. Extra-precision docking result revealed that hydrogen bonding and ionic interactions play a major role in ParE protein-ligand binding. Binding free energy was computed for the data set inhibitors to validate the binding affinity. A 30-ns molecular dynamics simulation showed high stability and effective binding of inhibitor 34 within the active site of ParE enzyme. Using the best fitted model AADHR.187, pharmacophore-based high-throughput virtual screening was performed to identify virtual hits. Based on the above studies three new molecules are proposed as E. coli ParE inhibitors with high binding affinity and favourable ADME properties.  相似文献   

19.
The aim of this study was to explore the composition and evaluate the in silico and in vitro antioxidants and antimicrobial and anti-inflammatory effects of Apium graveolens var. dulce leaves essential oil (AGO) collected from Al-Kharj (Saudi Arabia). AGO was isolated using the hydro-distillation method, and its composition was studied using gas-chromatography-mass Spectrometry (GC–MS), antimicrobial activities using well diffusion assay, and antioxidant and anti-inflammatory activities using spectrophotometric methods. The pharmacological activities of their major compounds were predicted using PASS (prediction of activity spectra for substances) and drug-likening properties by ADME (absorption, distribution, metabolism, and excretion) through web-based online tools. Isocnidilide (40.1%) was identified as the major constituent of AGO along with β-Selinene, Senkyunolide A, Phytyl acetate, and 3-Butylphthalide. AGO exhibited a superior antibacterial activity, and the strongest activity was detected against Gram-positive bacteria and Candida albicans. Additionally, it exhibited a weaker antioxidant potential and stronger anti-inflammatory effects. PASS prediction supported the pharmacological finding, whereas ADMET revealed the safety of AGO. The molecular docking of isocnidilide was carried out for antibacterial (DNA gyrase), antioxidant (tyrosinase), and anti-inflammatory (cyclooxygenase-2) activities. The docking simulation results were involved hydrophilic interactions and demonstrated high binding affinity of isocnidilide for anti-inflammatory protein (cycloxygenase-2). The presence of isocnidilide makes AGO a potential anti-inflammatory and antimicrobial agent. AGO, and its major metabolite isocnidilide, may be a suitable candidate for the future drug development.  相似文献   

20.
GABAA五种亚型受体与BZ配基的3D-QSAR研究   总被引:1,自引:0,他引:1  
GABAA受体是中枢神经系统内重要的抑制性受体,有广泛的神经生理活性.由于镇静/抗惊厥药物在临床上的广泛应用,使得其中苯并二氮杂作用位点尤为重要.我们用比较分子场法(CoMFA)对一系列咪唑苯并二氮杂类化合物(BZ)与五种重组受体亚型的亲和力进行了结构活性关系研究,得到的一组模型都有较高的交叉验证系数.并在此基础上,建立了非交叉验证的一组PLS模型.用该组模型对随机选择的6个化合物组成的测试集进行了预测,都得到了相当满意的结果,表明所建立的一组模型具有良好的预测能力.本研究对于设计高亲和力的BZ受体的配基和研究GABAA受体的模型有指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号