首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The chelate compounds K[Fe(hyc)3] and N2H5[Fe(hyc)3]·H2O (hyc = N2H3COO) were studied by the Mössbauer effect of 57Fe at various temperatures. At room temperature the quadrupole splitting parameter is 2.77 mm/sec for K[Fe(hyc)3] and 2.35 mm/sec for N2H5[Fe(hyc)3]·H2O, and the center shift is 1.08 mm/sec for both compounds. The temperature dependences of the quadrupole parameters yielded the crystal field splittings of the 5T2g levels of the Fe2+ ions which indicate large trigonal distortion of the Fe(hyc)3 anion. Using a molecular crystal-like treatment of the ferrous ion vibrations the temperature dependence of the recoilless fraction gave an effective Debye temperature ΘD = 71°K for K[Fe(hyc)3] and ΘD = 90°K for N2H5[Fe(hyc)3]·H2O. No evidence for magnetic ordering was found down to 4.5°K in either compound.  相似文献   

2.
The crystal structure of the “zero-strain” positive electrode material Li4Ti5O12 was characterized by neutron powder diffraction in the temperature range 3.4 K–300 K. No phase transition was detected, and the thermal evolution of lattice parameters has been evaluated by the 2nd order Grüneisen approximation using the Debye formalism for internal energy and intrinsic anharmonicity contributions. A relatively high Debye temperature θD = 689 ± 71 K was determined. The thermal behavior of cation-anion bond lengths in octahedral and tetrahedral environments is discussed. The lithium diffusion pathway in Li4Ti5O12 was discussed on the basis of bond-valence modeling.  相似文献   

3.
The two new hybrids single crystals having the general formula [(CH3CH2CH2)4N]2MIICl4 with MII = Co (1) and Mn (2) have been synthetised by the slow evaporation process in aqueous solutions. In this article, these compounds were described by the following characterization techniques: X-rays diffraction, thermal analysis (TGA-TDA), vibrational spectroscopy, nuclear magnetic resonance (NMR), and electrical properties. From the crystallographic study, the crystals (1) and (2) have been disclosed to be crystallized too in the centrosymmetric monoclinic systems, with space group P21/c (Z = 4) and C2/c (Z = 8), respectively. Their crystal structures consist of [MCl4]2− anions and two different cations [(CH3CH2CH2)4N]+, which are connected by a three dimensional network of C-H···Cl hydrogen bonds. In both crystals, each MII center atom being surrounded by four chloride ligands forming a slightly distorted tetrahedral geometry. The tetrahedral [CoCl4]2− is ordered, while the tetrahedral [MnCl4]2− is disordered. Some tetrapropylammonium cations of these compounds are found to be disordered. The thermal analysis studies made in the temperature range (298–473 K) did not show any phase transition for the two crystals. Furthermore, the electrical properties of the two compounds are studied by using the complex impedance spectroscopy technique in the temperature and frequency field varied of 290–363 K and 1 kHz–13 MHz, respectively.  相似文献   

4.
Single crystal X-ray and synchrotron X-ray powder diffraction have been used to probe the structure of Ba3NaIr2O9 from 300 K down to 20 K. Ba3NaIr2O9 is found to undergo a structural transition from hexagonal symmetry, P63/mmc, at ambient temperature to monoclinic symmetry, C2/c, at low temperature. The evolution of the unit cell volume upon cooling is indicative of a higher order structural transition, and the symmetry breaking becomes apparent as the temperature is decreased. The low temperature monoclinic structure of Ba3NaIr2O9 contains strongly distorted [NaO6] and [IrO6] octahedra in comparison to the room temperature hexagonal structure.  相似文献   

5.
Phosphors with outstanding luminescence thermal stability are desirable for high-power phosphor-converted light-emitting diode (pc-LED) lightings. High structural rigidity and large bandgap of phosphor hosts are helpful to suppress nonradiative relaxation of optical centers and realize excellent thermal stability. Unfortunately, few host materials simultaneously possess aforementioned structural features. Herein, we confirm that Sr3(PO4)2 (SPO) phosphate possesses high structural rigidity (Debye temperature, ΘD = 559 K) and large bandgap (Eg = 8.313 eV) by density functional theory calculations. As expected, Eu2+-doped SPO purple-blue phosphors show extraordinary thermal stability. At 150/300 °C, SPO:5%Eu2+ presents emission loss of only 4%/8% and a predicated ultrahigh thermal quenching temperature of 973 °C. The most strikingly discoveries here are that thermal-induced emission compensation appears within two distinct Eu2+ sites of SPO host. The outstanding thermal stability, on one hand, is attributed to rigid structure and large bandgap of host that inhibits nonradiative relaxation of Eu2+ and on the other hand, the emission self-compensation of Eu2+. Benefiting from synergistic effect of emission compensation and nonradiative transition restriction of Eu2+, as-prepared SPO:5%Eu2+ purple-blue phosphor not only presents superior thermal stability but also high internal quantum efficiency of 95.1% and excellent hydrolysis resistant. Some advanced applications are explored including white LED lighting and wide-color-gamut display. Our work provides in-deep insights into structure-property relationships of thermally stable phosphors.  相似文献   

6.
Using the first principles FLAPW-GGA method, comparative study of structural, electronic properties and of chemical bonding in four 1111-like chalcogenide oxides LaMChO (LaCuSO, LaCuSeO, LaAgSO, and LaAgSeO) with ZrCuSiAs-type structure was performed. Our studies showed that: (i) replacements of d metal atoms (Cu ↔ Ag) and chalcogen atoms (S ↔ Se) lead to anisotropic deformations of the crystal structure; this effect is related to strong anisotropy of inter-atomic bonds; (ii) all of the examined chalcogenide oxides are semiconducting; the band gap decreases both at S → Se and Cu → Ag substitutions; and (iii) the bonding in LaMChO phases can be classified as a high-anisotropic mixture of ionic and covalent contributions, where mixed covalent-ionic bonds take place inside [La2O2] and [M2Ch2] blocks, whereas between the adjacent [La2O2]/[M2Ch2] blocks, ionic bonds emerge owing to [La2O2] → [M2Ch2] charge transfer. Since the near-Fermi bands of LaMChO phases originate mainly from electronic states of [M2Ch2] blocks, we speculate that chemical substitutions inside these blocks can result in striking differences in electronic properties of these systems; therefore, this approach can be promising for significant enlargement of the functional properties of these materials.  相似文献   

7.
A series of yellow-emitting oxynitride Ca0.65Si10Al2O0.7N15.3:xEu2+ phosphors with α-sialon structure were synthesized. The phase composition and crystal structure were identified by X-ray diffraction and the Rietveld refinement. The excitation and emission spectra, reflectance spectra and thermal stability were investigated in detail, respectively. Results show that Ca0.65Si10Al2O0.7N15.3:0.12Eu2+ phosphors can be efficiently excited by UV-Vis light in the broad range of 290–450 nm and exhibit broad emission spectra peaking at 550–575 nm. The concentration quenching mechanism are discussed in detail and determined to be the dipole-dipole interaction. When the temperature increased to 150 °C, the emission intensity of Ca0.65Si10Al2O0.7N15.3:0.12Eu2+ phosphor is 88.46% of the initial value at room temperature. White LED was fabricated with N-UV LED chip combined with blue Ca3Si2O4N2:Ce3+ and yellow Ca0.65Si10Al2O0.7N15.3:Eu2+ phosphors. The color rendering index and correlated color temperature of this white LED were measured to 78.94 and 6728.12 K, respectively. All above results demonstrate that the as-prepared Ca0.65Si10Al2O0.7N15.3:xEu2+ may serve as a potential yellow phosphor for N-UV w-LEDs.  相似文献   

8.
The variations of cell parameters and thermal expansion tensors of metavanadates MV2O6 have been measured in the range 77–295 K. The thermal expansion anisotropy is characteristic of layer structures especially for brannerite-type structures (M = Cd, Zn, Mg); this anisotropy is explained by the presence of [VO5] polyhedra, such as occur in the V2O5 layer structure. For CaV2O6 the variation of thermal expansion as a function of temperature is abnormal: peaks, typical of a diffuse transition, are observed at 260 K for α1(T) and α3(T) curves. The temperature anomaly is reduced when cadmium is substituted for calcium.  相似文献   

9.
The thermal conductivity and heat capacity of high-purity single crystals of yttrium titanate, Y2Ti2O7, have been determined over the temperature range 2 K?T?300 K. The experimental heat capacity is in very good agreement with an analysis based on three acoustic modes per unit cell (with the Debye characteristic temperature, θD, of ca. 970 K) and an assignment of the remaining 63 optic modes, as well as a correction for CpCv. From the integrated heat capacity data, the enthalpy and entropy relative to absolute zero, are, respectively, H(T=298.15 K)−H0=34.69 kJ mol−1 and S(T=298.15 K)−S0=211.2 J K−1 mol−1. The thermal conductivity shows a peak at ca. θD/50, characteristic of a highly purified crystal in which the phonon mean free path is about 10 μm in the defect/boundary low-temperature limit. The room-temperature thermal conductivity of Y2Ti2O7 is 2.8 W m−1 K−1, close to the calculated theoretical thermal conductivity, κmin, for fully coupled phonons at high temperatures.  相似文献   

10.
The dynamics of [Zn(D2O)6]2+ in [Zn(D2O)6][SiF6] was investigated by 2H NMR one-dimensional spectra, two-dimensional exchange spectra and spin-lattice relaxation time (T1). The lineshapes of those spectra and T1 were dominated by the 180° flip of the water molecules and the reorientation of [Zn(D2O)6]2+ about the C3 axis. The variation of lineshape of the one-dimensional spectrum below room temperature can be explained by only the 180° flip of the water molecules. The spectrum at room temperature showed a typical shape due to the rapid 180° flip of water molecules. The change in lineshape of the one-dimensional 2H NMR spectrum is caused by the three-site jump of [Zn(D2O)6]2+ about its C3 axis above 333 K. Information of the reorientation of [Zn(D2O)6]2+ below 333 K could not be obtained from the one-dimensional spectrum and T1. In this temperature range, the two-dimensional exchange spectrum was effective for analysis of molecular motion. The effects of multiple motions, the 180° flip of the water molecules and the reorientation of [Zn(D2O)6]2+ about the C3 axis, on the lineshape of the two-dimensional exchange spectrum were studied using spectral simulation.  相似文献   

11.
This study reports the structural and spectroscopic characterization of a novel metal organic compound formulated as [Fe (bpy)3] [Fe (dipic)2]2.7H2O ( 1 ) (dipic = pyridine‐2,6‐dicarboxylate and bpy = 2,2‐bipyridine). 1 was investigated by elemental analysis, FT‐IR spectroscopy, powder X‐ray diffraction and single crystal X‐ray diffraction (SC‐XRD), which revealed a triclinic structure of expected composition. Thermal degradation of 1 was also investigated. Complex 1 was used as a precursor to prepare superparamagnetic nanoparticles of Fe3O4 by thermal analysis. The obtained Fe3O4 was characterized by Fourier transformed infrared spectroscopy (FT‐IR), powder X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Fe3O4 nanoparticles were used as a nano‐adsorbent to remove Cd2+ from water at room temperature. The results showed that this nano‐adsorbent is effective in removing Cd2+ from contaminated water sources, and that the maximal effectivity of adsorption occurs at pH = 6. Magnetic measurements of complex 1 and Fe3O4 nanoparticles at room temperature revealed paramagnetic and superparamagnetic behavior, respectively.  相似文献   

12.
《Polyhedron》2003,22(14-17):2375-2380
Iron (II), cobalt (II) and nickel (II) complexes of 2,6-bis(pyrazol-3-yl)pyridine (bpp) with [Cr(C2O4)3]3− have been prepared. They were characterised by single-crystal X-ray diffraction, magnetic susceptibility measurements and thermal gravimetric analyses. All three compounds are isostructural and they are formed by isolated [MII(bpp)2]2+ and [Cr(C2O4)3]3− complexes and free ClO4 . As expected, only the salt [Fe(bpp)2]2[Cr(C2O4)3]ClO4·5H2O shows a thermal spin transition with transition temperature (T1/2) around 375 K that is correlated to the loss of water molecules.  相似文献   

13.
《Solid State Sciences》2000,2(6):615-623
The title compound has been prepared by a flux crystallisation method and its crystal structure was determined by single crystal X-ray diffraction: space group P, a=5.309(1), b=7.133(1), c=14.746(2) Å, α=99.05(1), β=95.97(1), γ=90.08(1)°, wR2=0.073, R=0.028. The structure may be described as built by seidozerite modules of composition Na2Ti2O2Si2O7  brucite-type layers of [TiO6] and [NaO6] octahedra embedded between layers of [TiO6] octahedra, [Si2O7] groups and [NaO8] polyhedra. These almost centrosymmetrical triple-layers alternate along the c-axis with polar double-layer-modules of composition Na3VO4 formed by isolated [VO4]3− anions and six- and four-coordinate Na cations. The crystal structure is discussed in context with minerals of the lomonosovite group. The thermal decomposition behaviour suggests a decay to the single modular components Na2Ti2O2Si2O7 and Na3VO4.  相似文献   

14.
《Polyhedron》2005,24(16-17):2437-2442
The synthesis and magnetic characterization of pyrazolato-bridged dinuclear complexes [{M(NCS)(4-Phpy)}2(μ-bpypz)2] (Hbpypz = 3,5-bis(2-pyridyl)-pyrazole; 4-Phpy = 4-phenylpyridine; M = Co2+ (1) and Fe2+ (2)) are described together with the X-ray crystal analysis of the cobalt complex. The structure of 1 shows that the desired coordination has been achieved with the cobalt atoms being coordinated to two bpypz to form the dimer. The X-ray diffraction patterns show 1 and 2 to be isomorphous at room temperature. 2 displays a single spin-crossover transition between the [HS–HS] and [LS–LS] states with Tc = 150 K.  相似文献   

15.
The new hybrid material tetrapropylammonium hydrogen selenate bis (selenic acid), N(C3H7)4[HSeO4][H2SeO4]2 (hereafter abbreviated TPSe) has been synthesized by slow evaporation technique at room temperature. Crystal structure, DTA-TGA measurements, Raman, Infrared spectroscopy, nuclear magnetic resonance (NMR) electrical properties, and optical properties were provided to characterize the TPSe. This crystal structure contains one organic cation [N(C3H7)4]+, one [HSeO4] tetrahedra, and two neutral selenic acids H2SeO4. The inorganic [HSeO4] and H2SeO4 species consist of infinite two-dimensional inter-linkers via strong hydrogen bonds (O-H⋯O), giving birth to trimmers [(H2SeO4)2 HSeO4]nn−. The IR and Raman spectra of the compound recorded at room temperature were studied in regard to the literature data, and on the basis of theoretical group analysis. The theoretical calculations using the density functional theory DFT at the B3LYP/6-31G(d) level, are made to study the optimized molecular structure, the vibrational spectra, and the optical properties of TPSe compound. Good agreements were found between the theoretical results and the experimental Raman, IR spectra and the molecular structure. The polarizability α, the hyperpolarizability β, and the electric dipole μ calculated using DFT/B3LYP-31G(d) exhibit the non-zero hyperpolarizability β of the TPSe, indicating that this material could be used in certain NLO applications. The thermal DTA-TGA analyses did not show any phase transition in the 333–500 K temperature domain. The complex impedance spectroscopy is measured and discussed in the temperature (290–363 K) and frequency (1 kHz−13 MHz) domains to study the electrical propreties of the compound.  相似文献   

16.
《Solid State Sciences》2007,9(8):658-663
Hydrothermal methods were exploited in the preparation of bimetallic organic–inorganic hybrid materials of the metal-bisterpy/vanadate class. [Cu2(bisterpy)V4O12]·2H2O exhibits a two-dimensional structure constructed from {Cu2V4O12}n chains linked through bisterpy ligands. The isomorphous materials [M2(bisterpy)V4F2O11] (M = Cu, Zn) are also two-dimensional. In these cases, {M2V4F2O11}n chains are linked through bisterpy ligands to generate the two-dimensional network.  相似文献   

17.
Structural and photoluminescence properties of undoped and Ce3+-doped novel silicon-oxynitride phosphors of Ba4−zMzSi8O20−3xN2x (M=Mg, Sr, Ca) are reported. Single-phase solid solutions of Ba4−zMzSi8O20−3xN2x oxynitride were synthesized by partial substitutions of 3O2−→2N3− and Ba→M (M=Mg, Ca, Sr) in orthorhombic Ba2Si4O10. The influences of the type of alkaline earth ions of M, the Ce3+ concentration on the photoluminescence properties and thermal quenching behaviors of Ba3MSi8O20−3xN2x (M=Mg, Ca, Sr, x=0.5) were investigated. Under excitation at about 330 nm, Ba3MSi8O20−3xN2x:Ce3+ (x=0.5) exhibits efficient blue emission centered at 400-450 nm in the range of 350-650 nm owing to the 5d→4f transition of Ce3+. The emission band of Ce3+ shifts to long wavelength by increasing the ionic size of M due to the modification of the crystal field, as well as the Ce3+ concentrations due to the Stokes shift and energy transfer or reabsorption of Ce3+ ions. Among the silicon-oxynitride phosphors of Ba3MSi8O18.5N:Ce3+, M=Sr0.6Ca0.4 possesses the best thermal stability probably related to its high onset of the absorption edge of Ce3+.  相似文献   

18.
The magnetic property of Co2B2O5 and the optical property of M2B2O5 (M = Mn, Co) were investigated. Co2B2O5 showed antiferromagnetic behavior below the Néel temperature of TN ≈ 45 K, and the Weiss temperature was TW = +7.7 K. The effective magnetic moment of Co was 4.96 μB, which indicated that Co was divalent and in a high-spin state. Absorptions attributed to the d–d transitions in Mn2+ and Co2+ ions were observed at 250–650 nm in the diffuse reflection spectra. The optical absorption edges of Mn2B2O5 and Co2B2O5 were at 243 nm (5.11 eV) and 299 nm (4.15 eV), respectively.  相似文献   

19.
The reaction of NaOH with 4‐(2H‐tetrazol‐5‐yl)pyridine affords the first tetrazole‐pyridine sodium coordination polymer with chain structure, [Na(C6H4N5)(H2O)2]n ( 1 ). The compound could be characterized by single‐crystal X‐ray diffraction analysis. The temperature dependence of dielectric permittivity remains unchanged almost within the measured temperature range of 80 K to 270 K at 1 <SC>MH</SC>z, and the frequency dependence of the permittivity showed rapidly drops from 31.5 to 4.3 within the measured frequency range of 200 to 1 MHz at room temperature.  相似文献   

20.
A systematic study of densities and refractive indices of 17 room temperature ionic liquids is presented at four different temperatures ranging from 293 K to 333 K. The ionic liquids are grouped into four families: 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, [Cnmim][Ntf2], ionic liquids (with n = 2, 4, 6, 8, 10, 12, and 14); 1-alkyl-3-methylimidazolium hexafluorophosphate, [Cnmim][PF6], ionic liquids (with n = 4, 6, 8); ionic liquids based on the trihexyl(tetradecyl)phosphonium cation, [P6 6 6 14], combined with the anions bis(trifluoromethylsulfonyl)amide, [Ntf2], acetate, [OAc], and triflate, [OTf]; and [C4mim]-based ionic liquids combined with the anions [OAc], [OTf], methylsulfate [MeSO4], and tetrafluoroborate [BF4]. The data obtained were analysed to determine the effect of (i) temperature, (ii) the alkyl chain length of the 1-alkyl-3-methylimidazolium cation, and (iii) the nature of the anion. Different empirical models for the calculation of the densities of the ionic liquids were tested. Molar refractions were also calculated from the volumetric and refractive index data and the values were discussed with the aim of checking their utility in obtaining insights on the intermolecular forces and behaviour in solution of the different ionic liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号