首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An N3-(p-methoxyphenoxy)acetyloxazolidine-2-thione has been synthesized and employed in glycolate asymmetric aldol addition reactions with aromatic and aliphatic aldehydes. It was determined that the titanium tetrachloride medicated aldol reaction afforded diastereoselectivities that ranged from 75:25 to 94:6 when the reaction was conducted at ?78 °C. The absolute stereochemistry of the aldol adducts was determined by 1H NMR spectroscopy and X-ray crystallography. The 1H NMR spectra of the aldol adducts contained a signal (the α-proton of the glycolate position of the aldol side chain) that was highly deshielded due to conformational restriction about the N(3)-(p-methoxyphenoxy)acetyl side chain and the oxazolidine-2-thione auxiliary.  相似文献   

2.
The preparation of the pentacyano(iminiumacetyl)cobaltate(III) anion and its N-methyl and N,N-dimethyl derivatives is reported. The iminiumacetyl group is formed by migratory insertion of cis hydrogen isocyanide in the pentacyano(methyl)cobaltate(III) anion. The new compounds have been spectroscopically characterized by (1)H, (13)C, (15)N, and (59)Co NMR spectroscopy and by absorption spectroscopy. The iminium carbon atoms yield (13)C NMR signals at 256.7, 247.7, and 240.4 ppm for the parent iminiumacetyl compound and its N-methyl and N,N-dimethyl derivatives, respectively. The (15)N resonance frequencies of the iminium groups and the lack of rotation of the carbon-nitrogen bond both show that this bond is best described as a double bond. The structure of (Et(4)N)(Ph(4)As)(2)[Co(CN)(5)(CH(3))] was determined by X-ray crystallography at 122.0(5) K. The structure displays disorder.  相似文献   

3.
The conformational properties of the aldol adducts of some N4-isopropyl-oxadiazinones have been investigated by 1H NMR spectroscopy and computational studies. An earlier study of the syn-aldol adducts of N4-methyl-oxadiazinone 2 led to the conclusion that the solution and solid state conformation of these compounds involve syn-parallel arrangement of the C2- and N3-carbonyls of the oxadiazinones. However, the synthesis and asymmetric aldol reactions of an N3-hydrocinnamoyl-N4-isopropyl-oxadiazinone 4 has yielded aldol adducts 5a-e in which the orientation of the C2- and N3-carbonyls are most likely in the anti-parallel arrangement. These aldol adducts have been studied by 1H NMR spectroscopy and the shielding aspect observed clearly suggests the presence of the anti-parallel arrangement. The installment of a N4-d6-isopropyl group further confirmed this assertion. Computational studies support the conclusion that solution state conformation of the N4-methyl and N4-isopropyl-oxadiazinones involves anti-parallel carbonyls in contrast to the solid state evidence of the X-ray crystallographic data of oxadiazinone 2.  相似文献   

4.
微波辐射下,在冰醋酸中,3-甲基-4-氨基-1,2,4-三氮唑-5-硫酮1与芳香醛经微波辐射制得相应的中间体Schiff碱2(a~j),然后中间体2与1-[二-(4-氟苯)甲基]哌嗪于室温反应制得10个新的Mannich碱3(a~j).合成的10个目标化合物通过熔点测定和质谱、红外光谱、核磁共振氢谱分析、元素分析对其结构进行确证。  相似文献   

5.
The structure of 1,3,5-trimethyl-1,3,5-triaza-cyclohexane (TMTAC) was determined by single crystal X-ray diffraction and compared with earlier gas-phase data. It shows a preference for an aee-conformation in all phases. Lithiated TMTAC, [(RLi)(2)·(RH)] (1) (R = 2,4,6-trimethyl-2,4,6-triaza-cyclohex-1-yl), was reacted with Et(3)SiCl, Ph(3)SiCl and PhMe(2)SiCl to afford the substituted silanes Et(3)SiR (1), Ph(3)SiR (2) and PhMe(2)SiR (3) in moderate yields. They were characterised by NMR spectroscopy ((1)H, (13)C, (29)Si). 1 reacts with Me(2)SiCl(2) and Ph(2)SiCl(2) to give Me(2)SiR(2) (5) and Ph(2)SiR(2) (6) which were characterised by NMR spectroscopy. 5 was also identified by crystal structure determination. Analogous triple substitution could not be observed by employing trichlorosilanes. Quantumchemical calculations explain this by sterical overcrowding of the silicon atom. The reaction of 1 with SiCl(4) did not yield fourfold substitution but a formal insertion product of SiCl(2) into a C-N bond of the TMTAC ring (2,4,6-trimethyl-2,4,6-triaza-1,1-dichloro-1-sila-cycloheptane, 7) in very small quantities. It was identified by X-ray crystallography and shows an intramolecular Si···N dative bond. The reactions of (3) and (5) with n-butyl lithium afforded lithiation of the silicon bound methyl groups in both cases. The products, 8 and 9, were characterised by NMR spectroscopy ((1)H, (13)C, (29)Si), 8 was also characterised by X-ray crystallography.  相似文献   

6.
The N7/O6 equatorial binding interactions of the antitumor active complex Rh(2)(OAc)(4)(H(2)O)(2) (OAc(-) = CH(3)CO(2)(-)) with the DNA fragment d(GpG) have been unambiguously determined by NMR spectroscopy. Previous X-ray crystallographic determinations of the head-to-head (HH) and head-to-tail (HT) adducts of dirhodium tetraacetate with 9-ethylguanine (9-EtGH) revealed unprecedented bridging N7/O6 guanine nucleobases that span the Rh-Rh bond. The absence of N7 protonation at low pH and the notable increase in the acidity of N1-H (pK(a) approximately 5.7 as compared to 8.5 for N7 only bound platinum adducts), suggested by the pH dependence titrations of the purine H8 (1)H NMR resonances for Rh(2)(OAc)(2)(9-EtG)(2) and Rh(2)(OAc)(2-)[d(GpG)],are consistent with bidentate N7/O6 binding of the guanine nucleobases. The pK(a) values estimated for N1-H (de)protonation, from the pH dependence studies of the C6 and C2 (13)C NMR resonances for the Rh(2)(OAc)(2)(9-EtG)(2) isomers, concur with those derived from the H8 (1)H NMR resonance titrations. Comparison of the (13)C NMR resonances of C6 and C2 for the dirhodium adducts Rh(2)(OAc)(2)(9-EtG)(2) and Rh(2)(OAc)(2)[d(GpG)] with the corresponding resonances of the unbound ligands [at pH 7.0 for 9-EtGH and pH 8.0 for d(GpG)], shows substantial downfield shifts of Deltadelta approximately 11.0 and 6.0 ppm for C6 and C2, respectively; the latter shifts reflect the effect of O6 binding to the dirhodium centers and the ensuing enhancement in the acidity of N1-H. Intense H8/H8 ROE cross-peaks in the 2D ROESY NMR spectrum of Rh(2)(OAc)(2)[d(GpG)] indicate head-to-head arrangement of the guanine bases. The Rh(2)(OAc)(2)[d(GpG)] adduct exhibits two major right-handed conformers, HH1 R and HH2 R, with HH1 R being three times more abundant than the unusual HH2 R. Complete characterization of both adducts revealed repuckering of the 5'-G sugar rings to C3'-endo (N-type), retention of C2'-endo (S-type) conformation for the 3'-G sugar rings, and anti orientation with respect to the glycosyl bonds. The structural features obtained for Rh(2)(OAc)(2))[d(GpG)] by means of NMR spectroscopy are very similar to those for cis-[Pt(NH(3))(2))[d(GpG)]] and corroborate molecular modeling studies.  相似文献   

7.
The deprotection of phosphonium chloride salts [PR2(CH2OH)2]+Cl- and subsequent condensation reaction with N-methyl-2-aminopyridine has been carried out to give a series of ligands of the form PR2CH2N(CH3)C5H4N (R=Ph , Cy , t-Bu ) which have been fully characterised either as the pure ligand () or the air stable borane adducts (R=Cy , t-Bu ). The 1:1 reactions of , and with PdCl2(COD) gave the N,P chelate complexes [Pd{PR2CH2N(CH3)C5H4N}Cl2]; the Cy () and t-Bu () complexes were characterised by X-ray crystallography. The bisligated species [Pd{PCy2CH2N(CH3)C5H4N}2Cl2] () was obtained when the reaction was carried out at higher temperatures and the ligands were found to be coordinated to the metal in a trans configuration through the phosphorus donors. Abstraction of the chlorides from the bis-ligated species , using silver salts, resulted in the coordination of the pyridine ring forming the bis-chelate complex [Pd{PCy2CH2N(CH3)C5H4N}2]2+. In comparison, the palladium bis-chelate complex of ligand [Pd{PPh2CH2N(CH3)C5H4N}2]2+ () was shown to form in a cis configuration and was fully characterised by X-ray crystallography.  相似文献   

8.
The bifunctional conjugated organoboranes Ar2B-bt-BAr2, which contain 2,2'-bithiophene (bt) linkers and different aryl substituents on boron (3: Ar = p-tBuC6H4; 4: Ar = C6F5; 5: Ar = C6F5, Fc; Fc = ferrocenyl), have been synthesized. The electronic communication between the boron centers and cooperativity effects in the binding of pyridine have been investigated by a comprehensive study using X-ray crystallography, DFT calculations, cyclic voltammetry, 1H and 19F NMR, and UV visible absorption and emission spectroscopy. A comparison of the single-crystal X-ray structures of 4 and 4Py2 revealed a strongly diminished bond alternation in the thiophene rings for 4, indicative of a high degree of electronic delocalization. DFT calculations are in good agreement with the structural features determined from the X-ray analysis and, consistent with the experimental absorption and emission data, predict a smaller HOMO-LUMO gap for green luminescent 4 in comparison to blue luminescent 3. The complexation of pyridine to the two boron centers was further investigated by 1H and 19F NMR for 4 and by 1H NMR and UV-visible absorption spectroscopy for 3. We found that binding of the first pyridine molecule to one of the boryl groups significantly lowers the Lewis acidity of the other boryl group. For 3, the interaction parameter a, which provides a measure of communication between the boron sites, was determined to be a = 0.23 by UV-visible titration and 0.21 by 1H NMR spectroscopy. Further enhanced electronic communication was observed for the more highly Lewis acidic fluorinated derivative 4, for which a = 0.025 according to 19F and 1H NMR spectroscopy.  相似文献   

9.
Inner complex compounds (ICCs) and molecular adducts based on 2-(2-pyridyl)indandione-1,3 have been synthesized for the first time. The structure of the ligand (the preferred tautomer) and the complexes has been studied using X-ray crystallography, 1H NMR spectroscopy, and IR spectroscopy.  相似文献   

10.
The steric regulations imparted by the substituent at N1 in lithium mediated asymmetric aldol reactions of conformationally restricted 3-aryl-1-((S)-1-phenylethyl)-2-thioxotetrahydropyrimidin-4(1H)-ones governed the formation of anti aldol adducts, by a kinetic reaction pathway. The preferential formation of the anti aldol diastereomers was also assisted by the steric effects of the electrophile through diastereofacial selection while the electronic effects of the aryl group at N3 remained subtle. Incorporation of an endocyclic methyl group at C6 witnessed the diastereoselective formation of an anti aldol adduct by regulation of π-facial selectivity. The absolute configurations of the aldol adducts were determined by computational calculations and NMR experiments, and confirmed by single crystal X-ray analysis.  相似文献   

11.
The acid-catalyzed 1,4- and 1,3-cycloadditions between methyl glyoxylate oxime (1) and cyclopentadiene were investigated using various Lewis and/or Bronsted acids at different temperatures in dichloromethane as solvent. Besides the expected new adducts, (±)-methyl [(3-exo)-2-hydroxy-2-azabicyclo[2.2.1]hept-5-ene]-3-carboxylate (2) and (±)-methyl [(3-endo)-2-hydroxy-2-azabicyclo[2.2.1]hept-5-ene]-3-carboxylate (3), a third adduct, (±)-methyl (1R,4R,5R)-(2-oxa-3-azabicyclo[3.3.0]oct-7-ene)-4-carboxylate (4), whose formation can be explained by a 1,3-dipolar cycloaddition, was obtained. Yields and product ratios were found to be more dependent on the catalyst than on the temperature; these results and the stereochemistry of the adducts, confirmed by spectroscopic data (1H and 13C NMR) and by X-ray crystallography, were used to analyze and propose a mechanistic explanation for both cycloadditions.  相似文献   

12.
The synthesis of a penta(1-methylpyrazole)ferrocenyl phosphine oxide ligand (1) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))] is reported together with its X-ray crystal structure. Its self-assembly behavior with a dirhodium(II) tetraoctanoate linker (2) [Rh(2)(O(2)CC(7)H(15))(4)] was investigated for construction of fullerene-like assemblies of composition [(ligand)(12)(linker)(30)]. Reaction between 1 and 2 in acetonitrile resulted in the formation of a light purple precipitate (3). Evidence for the ligand-to-linker ratio of 1:2.5 expected for a fullerene-like structure [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))](12)[Rh(2)(O(2)CC(7)H(15))(4)](30) was obtained from (1)H NMR and elemental analysis. IR and Raman studies confirmed the diaxially bound coordination environment of the dirhodium linker by comparing the stretching frequencies of the carboxylate group and the rhodium-rhodium bond with those in model compound (5), [Rh(2)(O(2)CC(7)H(15))(4)](C(3)H(3)N(2)CH(3))(2), the bis-adduct of linker 2 with 1-methylpyrazole. X-ray powder diffraction and molecular modeling studies provide additional support for the formation of a spherical molecule topologically identical to fullerene with a diameter of approximately 38 ? and a molecular formula of [(1)(12)(2)(30)]. Dissolution of 3 in tetrahydrofuran (THF) followed by layering with acetonitrile afforded purple crystals of [(1)(2)(2)](∞) (6) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))][Rh(2)(O(2)CC(7)H(15))(4)](2) with a two-dimensional polymeric structure determined by X-ray crystallography. The dirhodium linkers link ferrocenyl units by coordination to the pyrazoles but only four of the five pyrazole moieties of the pentapyrazole ligand are coordinated. The ligand-to-linker ratio of 1:2 in 6 was confirmed by (1)H NMR spectroscopy and elemental analysis, while results from IR and Raman are in agreement with the diaxially coordinated environment of the linker observed in the solid state.  相似文献   

13.
The interactions of [Pt(en)Cl(ACRAMTU-S)](NO3)2 (PT-ACRAMTU, en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) with adenine in DNA have been studied using a combination of analytical and high-resolution structural methods. For the first time, a cytotoxic platinum(II) complex has been demonstrated to form adducts in the minor groove of DNA through platination of the adenine-N3 endocyclic nitrogen. An acidic depurination assay was developed that allowed the controlled and selective (pH 2, 60 degrees C, 12 h) release of platinum-modified adenine from drug-treated nucleic acid samples. From the digested mixtures, three adducts were isolated by semipreparative reverse phase high-performance liquid chromatography and studied by electrospray ionization mass spectrometry (in-line LC-MS), variable-pH 1H NMR spectroscopy, and, where applicable, X-ray crystallography. The three species were identified as the N7 (A-I), N3 (A-II), and N1 (A-III) linkage isomers of [Pt(en)(ACRAMTU-S)(adenine)]3+ (A). Incubations carried out with the single- and double-stranded model sequences, d(TA)5 and d(TA)15, as well as native DNA indicate that the adduct profiles (A-I:A-II:A-IIIratios) are sensitive to the nature of the nucleic acid template. A-II was found to be a double-strand specific adduct. The crystal structure of this adduct has been determined, providing ultimate evidence for the N3 connectivity of platinum. A-II crystallizes in the triclinic space group P in the form of centrosymmetric dimers, {[Pt(en)(ACRAMTU-S)(adenine-N3)]2}6+. The cations are stabilized by a combination of adenine-adenine base pairing (N6...N1 2.945(5) A) and mutual acridine-adenine base stacking. Tandem mass spectra and 1H chemical shift anomalies indicate that this type of self-association is not merely a crystal packing effect but persists in solution. The monofunctional platination of adenine at its N7, N3, and N1 positions in a significant fraction of adducts breaks a longstanding paradigm in platinum-DNA chemistry, the requirement for nucleophilic attack of guanine-N7 as the principal step in cross-link formation. The biological consequences and potential therapeutic applications of the unique base and groove recognition of PT-ACRAMTU are discussed.  相似文献   

14.
Adenine acidification as a consequence of simultaneous PtII binding to N1 and N7 facilitates deprotonation of the exocyclic N(6)H2 group and permits PtII migration from N1 to N6 under mild conditions. Starting from the trinuclear complex cis-[(NH3)2Pt(N1-9-MeA-N7)2{Pt(NH3)3)}2]6+ (3), stepwise migration of cis-(NH3)2PtII takes place in the alkaline aqueous solution to give initially cis-[(NH3)2Pt(N1-9-MeA-N7)(N6-9-MeA--N7){Pt(NH3)3}2]5+ (4) and eventually cis-[(NH3)2Pt(N6-9-MeA--N7)2{Pt(NH3)3}2]4+ (5) (with 9-MeA = neutral 9-methyladenine, 9-MeA- = 9-methyl-adenine monoanion, deprotonated at N6). The migration process has been studied by 1H NMR spectroscopy, and relevant acid-base equilibria have been determined. 5 has been crystallized as its nitrate salt and has been characterized by X-ray crystallography. The precursor of 3, [(NH3)3Pt (9-MeA-N7)]Cl2.2H2O (2) has likewise been studied by X-ray analysis.  相似文献   

15.
High-resolution liquid- and solid-state 119Sn NMR spectroscopy was used to study the bonding environment in the series of monomeric, two-coordinate Sn(II) compounds of formula Sn(X)C6H3-2,6-Trip2 (X = Cl, Cr(eta 5-C5H5)(CO)3, t-Bu, Sn(Me)2C6H3-2,6-Trip2; Trip = C6H2-2,4,6-i-Pr3). The trends in the principal components of the chemical shift tensor extracted from the solid-state NMR data were consistent with the structures determined by X-ray crystallography. Furthermore, the spectra for the first three compounds displayed the largest 119Sn NMR chemical shift anisotropies (up to 3798 ppm) of any tin compound for which data are currently available. Relaxation time based calculations for the dimetallic compound 2,6-Trip2H3C6Sn-Sn(Me)2C6H3-2,6-Trip2 suggests that the chemical shift anisotropy for the two-coordinate tin center may be as much as ca. 7098 ppm, which is as broad as the 1 MHz bandwidth of the NMR spectrometer.  相似文献   

16.
Chemical and electrochemical synthesis of a series of cobalt(II), nickel(II), copper(II), and zinc(II) complexes of tridentate Schiff base (H2L), a product of condensation of N-(2-aminophenyl)-4-methylbenzenesulfonamide (2-tosylaminoaniline) with 1-phenyl-3-methyl-4-formylpyrazol-5-ol was accomplished. The structure and composition of metal-chelates were established by the C, H, N elemental analysis, IR, 1H NMR, EXAFS spectroscopy and magnetochemical data. The structures of all complexes were confirmed by of X-ray crystallography.  相似文献   

17.
2D (1)H,(89)Y heteronuclear shift correlation through scalar coupling has been applied to the chemical-shift determination of a set of yttrium complexes with various nuclearities. This method allowed the determination of (89)Y NMR data in a short period of time. Multinuclear NMR spectroscopy as function of temperature, PGSE NMR-diffusion experiments, heteronuclear NOE measurements, and X-ray crystallography were applied to determine the structures of [Y(5)(OH)(5)(L-Val)(4)(Ph(2)acac)(6)] (1) (Ph(2)acac=dibenzoylmethanide, L-Val=L-valine), [Y(2)(OTf)(3)] (3), and [Y(2)(4)(OTf)(5)] (5) (2: [(S)P{N(Me)N=C(H)Py}(3)], 4: [B{N(Me)N=C(H)Py}(4)](-)) in solution and in the solid state. The structures found in the solid state are retained in solution, where averaged structures were observed. NMR diffusion measurements helped us to understand the nuclearity of compounds 3 and 5 in solution. (1)H,(19)F HOESY and (19)F,(19)F EXSY data revealed that the anions are specifically located in particular regions of space, which nicely correlated with the geometries found in the X-ray structures.  相似文献   

18.
Alkynes are found to react with [W2(OCH2tBu)8] (M = M) in hydrocarbon solvents at room temperature or 45 degrees C to give 1:1 adducts. These are shown to be either bridged (mu-PhCCH and mu-MeCCMe) or terminal-bound (eta2-PhCCMe) in the solid state by single-crystal X-ray crystallography. In solution NMR spectroscopy reveals that bridged and terminal species exist in equilibrium for MeCCH, MeCCMe, and PhCCMe. By NMR spectroscopy the PhCCH and Me3SiCCH adducts are present in solution in bridging and terminally bonded species, respectively. The interconversion of bridged and terminal-bound adducts is chemically rapid but slow on the NMR time scale even though each type of adduct shows fluxional behavior. Calculations employing density functional theory have been carried out on alkyne adducts of the model template W2(OCH3)8 and reveal very small differences in energy between a mu-skewed structure and one having a terminal eta2-alkyne.  相似文献   

19.
Building on recent advances in synthesis showing that the addition of inorganic salts to Grignard reagents can greatly enhance their performance in alkylation reactions to ketones, this study explores the reactions of EtMgCl with benzophenone in the presence of stoichiometric or catalytic amounts of ZnCl(2) with the aim of furthering the understanding of the role and constitution of the organometallic species involved in these transformations. Investigations into the metathesis reactions of three molar equivalents of EtMgCl with ZnCl(2) led to the isolation and characterisation (X-ray crystallography and (1)H and (13)C NMR spectroscopy) of novel magnesium "zinc-rich" zincate [{(THF)(6)Mg(2)Cl(3)}(+){Zn(2)Et(5)}(-)] (1), whose complicated constitution in THF solutions was assessed by variable-temperature (1)H DOSY NMR studies. Compound 1 reacted with one equivalent of benzophenone to yield magnesium magnesiate [{(THF)(6)Mg(2)Cl(3)}(+){Mg(2)(OC(Et)Ph(2))(2)Cl(3)(THF)}(-)] (3), whose structure was determined by X-ray crystallography. (1)H NMR monitoring of this reaction showed two equivalents of ZnEt(2) formed as a co-product, which together with the "magnesium only constitution" of 3 provides experimental insights into how zinc can be efficiently recycled in these reactions, and therefore used catalytically. The chemoselectivity of this reaction can be rationalised in terms of the synergic effect of magnesium and zinc and contrasts with the results obtained when benzophenone was allowed to react with EtMgCl in the absence of ZnCl(2), where the reduction of the ketone takes place preferentially. The reduction product [{(THF)(5)Mg(3)Cl(4){OC(H)Ph(CF(3))}(2)] (4) obtained from the reaction of EtMgCl with 2,2,2-trifluoroacetophenone was established by X-ray crystallography and multinuclear ((1)H, (13)C and (19)F) NMR spectroscopy. Compounds 3 and 4 exhibit new structural motifs in magnesium chemistry having MgCl(2) integrated within their constitution, which highlights the new role of this inorganic salt in providing structural support for the newly generated alkoxide ligand.  相似文献   

20.
2-Amino-1-ethylbenzimidazole (L1) adducts with copper(II), cobalt(II), and zinc(II) chelates of N,N,S tridentate tosylamino-functionalized mercaptopyrazole-containing Schiff base (H2L), resulting from condensation of 2-tosylaminoaniline with 1-phenyl-3-methyl-4-formylpyrazole-5-thiol, with the general formula [ML · L1] were obtained by electrochemical method. The structure and composition of the complexes were confirmed by the data of C, H, N elemental analysis, IR and 1H NMR spectroscopy, and magnetochemical and X-ray spectral measurements. The mononuclear structure of the copper(II) adduct with coordination bond located on the pyridine type endocyclic nitrogen atom of 2-amino-1-ethylbenzimidazole was proved by X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号