共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
实现快速、精确地鉴别玉米单倍体籽粒对玉米单倍体育种技术十分重要。近红外光谱分析技术可在线分析、监测,且无损、分析速度快、操作简便、测试成本低,对实现自动化的大规模鉴定并分拣玉米单倍体非常有帮助。通过美国JDSU的近红外光谱仪进行玉米近红外光谱的数据采集,交叉采集玉米单倍体、多倍体数据。数据处理时,将数据分为训练集和测试集两部分。依次对数据做预处理以消除噪声影响,做核变换将其投射到更高维度空间中增强可分性并进行特征提取,最后建立分类模型鉴别分析。分别统计采用不同的特征提取算法并建立模型鉴别测试的正确识别率。实验结果表明,采用核局部保持投影(KLPP)的特征提取算法的正确识别率更高、稳定性更好,在两组测试集上的正确识别率的均值分别达到95.71%和96.43%。通过分析可以得出,玉米种子的近红外光谱数据经过非线性变换(为高斯核变换)投影到更高维度的空间后,表现出更易于分类的分布特点,保持数据的局部特性也更利于后续的分类。这为玉米单倍体鉴定进一步研究提供了新的方向。 相似文献
3.
改进的基于二维主分量分析的掌纹识别 总被引:1,自引:0,他引:1
主分量分析(PCA)是一种在众多生物特征识别中获得成功应用的特征提取技术,是一种基于二阶统计的在最小均方误差意义上的最优维数据压缩技术,它所提取的各特征分量之间是互不相关的。传统的PCA变换是对图像向量的分析,但向量维数一般都很高。二维主分量分析方法是最近兴起的针对图像矩阵的主分量分析方法,与一维主分量分析相比能更精确的计算原始数据的协方差矩阵。将其应用于掌纹识别,并在主分量的选取上加以改进,选取了更适合于分类的主分量。实验结果表明,该方法不仅有更高的识别率,而且维数更低。 相似文献
4.
5.
针对近红外光谱高维、高冗余、非线性和小样本等特点导致光谱相似性度量时出现的“维度灾难”,提出一种基于核映射和rank-order距离的局部保持投影(KRLPP)算法。首先将光谱数据经过核变换映射到更高维空间,有效保证了流形结构的非线性特征。然后改进局部保持投影(LPP)算法对数据进行降维操作,将rank-order距离替代传统的欧氏距离或测地线距离,通过共享邻近点的信息,得到更加准确的局部邻域关系。最后在低维空间通过距离的计算实现光谱的度量。该方法不仅有效解决了高维空间存在的“距离失效”问题,同时还提高了相似性度量结果的精度。为了验证KRLPP算法的有效性,首先根据降维前后数据集信息残差的变化确定了最佳参数近邻点的个数k和降维后的维数d。其次,从光谱降维投影效果和模型分类效果两个角度与PCA,LPP和INLPP算法进行了对比,结果表明KRLPP算法对于烟叶的部位有较好的区分能力,降维效果以及对于不同部位的正确识别率明显优于PCA,LPP和INLPP。最后,从某品牌卷烟叶组配方中选取了5个代表性烟叶作为目标烟叶,分别采用PCA,LPP和KRLPP方法从300个用于配方维护的烟叶样品中为每个目标烟叶寻找相似烟叶,并从化学成分和感官评价两方面对替换前后的烟叶及叶组配方进行了评价分析。其中LPP和KRLPP用于降维的参数选择保持一致,PCA选择前6个主成分。结果表明,由KRLPP选出的替换烟叶与替换配方在总糖、还原糖、总烟碱、总氮等化学成分以及香气、烟气、口感等感官指标上较PCA、LPP方法差异最小,相似性度量准确度最高。该方法可应用于配方产品替换原料的查找,辅助企业实现产品质量的维护。 相似文献
6.
主成分分析(PCA)法在掌纹识别方面可以取得较好的效果.但是随着掌纹图像库的扩大,PCA转换矩阵训练时间迅速增长;注册新掌纹时,需要重新训练PCA转换矩阵.添加注册掌纹的代价随着掌纹库的增大迅速增加.如何能够在保持PCA识别效果的情况下提高使用的便捷性成为PCA广泛应用的主要障碍.提出了一种以PCA重建误差为分类依据的PCA重建误差学纹识别方法.该方法与PCA法基于相同的原理,在采用最近邻分类器时可以取得与PCA法相等的性能;同时可以有效减少掌纹图像库的识别时间,可以以极少的代价扩展掌纹库. 相似文献
7.
针对主元分析(Principal component analysis, PCA)和局部保持投影(Locality preserving projections, LPP)方法在降维过程中分别只能保留数据集的整体信息和局部信息,提出一种基于局部整体结构保持投影的贝叶斯故障检测与辨识方法(Local and global structure preserving projections and bayes, LGSPP-Bayes)。首先,将正常工况操作下的原始数据通过局部整体结构保持投影方法投影到低维特征空间,得到高维到低维的数据转换矩阵;然后通过设计贝叶斯分类器来进行故障检测;最后当检测到故障后通过计算贝叶斯分类函数的大小来识别故障种类。将LGSPP-Bayes方法应用于TE过程,仿真结果表明对故障的检测优于其他方法,并且可以很好地将故障种类识别出来。 相似文献
8.
拉曼谱峰识别是拉曼光谱定性分析中的关键技术之一。针对现有方法的自动化程度不高、识别率低的问题,提出了一种新的基于多尺度局部信噪比(MLSNR)的拉曼谱峰识别算法。算法通过多尺度二阶差分运算,得到光谱的差分系数,再将差分系数除以估计出的噪声标准差,获得光谱的MLSNR矩阵,通过寻找MLSNR矩阵中的局部极大值形成的脊线来识别拉曼谱峰。算法采用自动阈值估计法去除噪声引起的局部极大值的干扰,可实现谱峰的自动化识别,不需设置任何参数。仿真实验结果表明:无论对单峰还是重叠峰,当拉曼谱峰信噪比大于等于6时MLSNR的谱峰识别准确率均高达100%,即使对处于检测限的单峰,仍有95%以上的识别准确率。MLSNR是一种切实可行的拉曼谱峰识别方法。 相似文献
9.
提出一种基于人体轮廓表达的姿势学习框架来进行人体行为识别。通过一种基于Procrustes形状分析和局部保持投影的姿势特征表示方法,从人体运动视频中提取具有平移、旋转和放缩不变性的姿势特征,在保留人体姿势的局部流形结构的同时尽量提取子空间上的判别信息。针对该特征还提出了一种基于姿势字典学习的人体行为识别框架,对每类行为分别学习一个对应于该类的字典,通过串联所有类的字典来得到整个姿势字典;并通过最小重构误差准则来分类测试视频。在Weizmann和MuHAVi-MAS14数据集上的实验结果证实了该方法的识别率高于大部分经典方法。特别是在MuHAVi-MAS14数据集上的识别率对比已有的结果上有巨大的提升。 相似文献
10.
为了保证非接触式掌纹识别系统所采集的掌纹图像清晰度能够满足识别要求,缩短用户的测试时间,建立了图像清晰度与掌纹错误识别率的关系模型,并实现改进的非接触式在线掌纹识别模拟系统.引入图像清晰度评价函数,建立图像清晰度函数与物距(手与镜头的距离)之间的关系模型;进一步建立图像清晰度与该清晰度下掌纹识别系统错误识别率的关系模型... 相似文献
11.
生物特征识别在信息安全领域发挥着重要作用,掌纹识别作为一种新型生物特征识别方式,具有低失真、非侵入性和高唯一性等优势。传统掌纹研究大多使用自然光成像系统以灰度格式获取,识别精度很难进一步提升。为了获得更多的身份鉴别信息,提出利用多光谱掌纹图像代替自然光掌纹图像。针对现有掌纹识别算法由于没有考虑到不同光谱的特性而导致纹理细节丢失,识别精准率低的问题,提出了一种基于多光谱图像融合的掌纹识别算法。该方法通过对不同光谱下的掌纹图像进行快速自适应二维经验模式分解(FABEMD),将多光谱掌纹图像分解成一系列频率由高到低的二维固有模态函数(BIMF)和一个残余分量,残余分量可被视为该光谱图像低频信息的初步估计。图像采集过程中光照条件很难保持稳定,而近红外光谱图像在进行FABEMD分解时对光照变换敏感,容易导致分解后的BIMF背景信息过于冗余;因此对分解后的近红外掌纹图像进行背景重建及特征细化,在对背景冗余信息进行平滑处理的同时可以有效增强高频信息的特征表达。为避免直接融合处理后引发的图像过度曝光问题,提出对近红外特征压缩后再融合。此外,提出了一种结合了注意力机制的改进残差网络(IRCANet),用于融合后的掌纹图像分类,在网络中引入分阶段残差结构,缓解了网络的退化问题,在学习过程中有效地减少信息丢失,对于融合后的多光谱掌纹图像,分阶段残差结构能够稳定地将图像信息在网络间传输,但对图像中的高低频信息区分效果不够显著,为了使网络关注更多区分性特征,利用特征通道间的相互依赖性,在分阶段残差结构中结合了通道注意力(Channel Attention)机制。最终,在香港理工大学(PolyU)多光谱掌纹数据集上进行的综合实验表明,该方法可以取得良好的效果,算法识别准确率能达到99.67%且具有良好的实时性。 相似文献
12.
13.
1 Introduction ThematchedspatialfilteringproposedbyVanderlugt[1] hasreceivedconsiderableattentionbecauseithasinherentadvantageofshiftinvariance ,butthistechniquesuffersfromsensitivitytorotationandscaledeformation .Theinvarianceisthekeytopatternrecogniti… 相似文献
14.
15.
菌紫质是一种结构和功能与高级动物视网的视生色素--视紫红质极为相似的蛋白南,是一种优异的可逆光全息记录材料,子波变换是目标特征抽取和模式识别和有效方法。本文钭联合子波变换和菌紫质膜优异的光学全息记录特性结合起来,提出了一种全新的光学全息实时模式识别方案,给出了相应的实验结果。 相似文献
16.
基于支持向量机的非线性荧光光谱的识别 总被引:4,自引:4,他引:4
提出将支持向量机网络应用于含不同浓度杂质气体的非线性荧光光谱的识别。由于原始光谱数据的光谱通道数目很大,首先用小波变换去噪压缩,然后采用主成分分析方法对光谱信息进行连续两次的特征提取。在保持原光谱数据主要信息基本不变的情况下,将数据维数由3979压缩到514(小波变换)并提取9个主成分。这样,不仅减少了网络的输入维数,而且加快了网络的训练速度。实验结果表明,无论对训练样本还是未学习过的测试样本,其正确识别率均可达到100%。网络的训练和测试速度较快,可以更有效地应用于大气杂质气体的实时监测。 相似文献
17.
支持向量机(SVM)是一种基于超平面分类的新的学习方法,具有很强的泛化能力。研究了支持向量机的学习机理,以及实现支持向量机的序贯最小优化算法(SMO),并用来对舰船图像进行识别。首先将待识别目标进行二维小波分解,获取不同尺度下的小波系数,然后对其进行主元分析,得到的主元分量作为支持向量机的特征量输入。实验结果表明,该方法具有良好的分类性能。 相似文献