首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ferromagnetic spin chains of a hexagonal lattice coupled by a weak antiferromagnetic interaction J1 develop a helix arrangement if the intrachain antiferromagnetic NNN exchange J2 is sufficiently large. We show that the classical minimum energy spin configuration is an umbrella when an external magnetic field is applied. The scenario is dramatically changed by quantum fluctuations. Indeed we find that the zero point motion forces the spins in a plane containing the magnetic field so that classical expectation is deceptive for our model. Our result is obtained by controlled expansion in the low field-long wavelength modulation limit. Received: 9 September 1997 / Revised: 15 October 1997 / Accepted: 17 November 1997  相似文献   

2.
We review the normal and superconducting state properties of the unconventional triplet superconductor Sr2RuO4 with an emphasis on the analysis of the magnetic susceptibility and the role played by strong electronic correlations. In particular, we show that the magnetic activity arises from the itinerant electrons in the Ru d‐orbitals and a strong magnetic anisotropy occurs (χ+‐ < χzz) due to spin‐orbit coupling. The latter results mainly from different values of the g‐factor for the transverse and longitudinal components of the spin susceptibility (i.e. the matrix elements differ). Most importantly, this anisotropy and the presence of incommensurate antiferromagnetic and ferromagnetic fluctuations have strong consequences for the symmetry of the superconducting order parameter. In particular, reviewing spin fluctuation‐induced Cooper‐pairing scenario in application to Sr2RuO4 we show how p‐wave Cooper‐pairing with line nodes between neighboring RuO2‐planes may occur. We also discuss the open issues in Sr2RuO4 like the influence of magnetic and non‐magnetic impurities on the superconducting and normal state of Sr2RuO4. It is clear that the physics of triplet superconductivity in Sr2RuO4 is still far from being understood completely and remains to be analyzed more in more detail. It is of interest to apply the theory also to superconductivity in heavy‐fermion systems exhibiting spin fluctuations.  相似文献   

3.
We study the zero-temperature spin fluctuations of a two-dimensional itinerant-electron system with an incommensurate magnetic ground state described by a single-band Hubbard Hamiltonian. We introduce the (broken-symmetry) magnetic phase at the mean-field (Hartree-Fock) level through a spiral spin configuration with characteristic wave vector Q different in general from the antiferromagnetic wave vector Q AF, and consider spin fluctuations over and above it within the electronic random-phase (RPA) approximation. We obtain a closed system of equations for the generalized wave vector and frequency dependent susceptibilities, which are equivalent to the ones reported recently by Brenig. We obtain, in addition, analytic results for the spin-wave dispersion relation in the strong-coupling limit of the Hubbard Hamiltonian and find that at finite doping the spin-wave dispersion relation has a hybrid form between that associated with the (localized) Heisenberg model and that associated with the (long-range) RKKY exchange interaction. We also find an instability of the spin-wave spectrum in a finite region about the center of the Brillouin zone, which signals a physical instability toward a different spin- or, possibly, charge-ordered phase, as, for example, the stripe structures observed in the high-T c materials. We expect, however, on physical grounds that for wave vectors external to this region the spin-wave spectrum that we have determined should survive consideration of more sophisticated mean-field solutions. Received 15 September 2000  相似文献   

4.
By constrained spin-density functional calculations we estimate the relative role of the longitudinal and transversal fluctuations of the magnetic moments in the series of 3d metals (bcc Fe, hcp and fcc Co, and fcc Ni) for weak excitations from the ferromagnetic ground state. It is shown that the importance of longitudinal fluctuations strongly varies from relatively small in bcc Fe to large in fcc Ni. This means that a consistent adiabatic treatment of the low-energy spin fluctuations should include independent longitudinal fluctuations.  相似文献   

5.
We present an analytic study of the physics of the glasma which is a strong classical gluon field created at early stage of high-energy heavy-ion collisions. Our analysis is based on the picture that the glasma just after the collision is made of color electric and magnetic flux tubes extending in the longitudinal direction with their diameters of the order of 1/Qs (Qs is the saturation scale of the colliding nuclei). We find that both the electric and magnetic flux tubes expand outwards and the field strength inside the flux tube decays rapidly in time. Next we investigate whether there exist instabilities against small rapidity-dependent perturbations for a fixed color configuration. We find that the magnetic background field exhibits an instability induced by the fluctuations in the lowest Landau level, and it grows exponentially in the time scale of 1/Qs. For the electric background field we find no apparent instability while the possible relation to the Schwinger mechanism for particle pair creations is suggested.  相似文献   

6.
We consider spin ice magnets (primarily, Dy2Ti2O7 in the vicinity of their critical point on the (H, T) plane. We find that the longitudinal susceptibility diverges at the critical point, leading to the behavior qualitatively similar to the one which would result from non-zero conductance of magnetic charges. We show that dynamics of critical fluctuations belongs to the universality class of easy-axis ferroelectric and calculate logarithmic corrections (within two-loop approximation) to the mean-field critical behavior.  相似文献   

7.
We calculate the zero temperature magnetizationm of a one-dimensional Ising spin glass is a weak magnetic fieldh. We show thatmCh x and give closed expressions for the constantC and the exponentx which both depend on the probability distribution of nearest-neighbor interactions.  相似文献   

8.
Bose-Einstein condensates of atoms with non-zero spin are known to constitute an ideal system to investigate fundamental properties of magnetic superfluids. More recently it was realized that they also provide the fascinating opportunity to investigate the macroscopic amplification of quantum and classical fluctuations. This is strikingly manifested in a sample initially prepared in the m F = 0 state, where spin-changing collisions triggered by quantum fluctuations may lead to the creation of correlated pairs in m F = ±1. We show that the pair creation efficiency is strongly influenced by the interplay between the external trapping potential and the Zeeman effect. It thus reflects the confinement-induced magnetic field dependence of elementary spin excitations of the condensate. Remarkably, pair production in our experiments is therefore characterized by a multi-resonant dependence on the magnetic field. Pair creation at these resonances acts as strong parametric matter-wave amplifier. Depending on the resonance condition, this amplification can be extremely sensitive or insensitive to the presence of seed atoms. We show that pair creation at a resonance which is insensitive to the presence of seed atoms is triggered purely by quantum fluctuations and thus the system acts as a matter-wave amplifier for the vacuum state.  相似文献   

9.
We discuss a possible route to explain high-temperature ferromagnetism in Si:Mn dilute magnetic semiconductors. We argue that most Mn atoms are segregated within nanometer-sized regions of magnetic precipitate and form the alloy, or compound, MnSi2 -z with z (0.25?\div0.30), whereas a small minority of Mn atoms forms ?ngstr?m-sized magnetic defects embedded in the host. Assuming that MnSi2 -z is a weak itinerant ferromagnet which supports sizable spin fluctuations (paramagnons) far above the intrinsic Curie temperature, we show that the Stoner enhancement of the exchange interaction between the local magnetic moments of the defects occurs. As a result, a significant increase of the temperature of global ferromagnetic order in the system is achieved. We develop a phenomenological approach, to qualitatively describe this effect.  相似文献   

10.
Starting from a many–body Hamiltonian for a system of photogenerated electrons and holes, spin-split by magnetic ions in diluted magnetic semiconductors, we derive, presumably for the first time, an expression for the photomagnetization as a function of the photon power, frequency, excitonic interaction and the magnetic ion concentration. Damping of nonequilibrium carriers and spin excitons is considered phenomenologically. Our results agree qualitatively with some of the systematics of the photomagnetization observed in Hg 1?x Mn x Te.  相似文献   

11.
We consider an Ising model with random magnetic fieldh i and random nearest-neighbor couplingsJ ij . The random variablesh i andJ ij are independent and identically distributed with a nice enough distribution, e.g., Gaussian. We will prove that (i) at high temperature, infinite volume correlation functions are independent on the boundary conditions and decay exponentially fast with probability 1 and (ii) for any temperature with sufficiently strong magnetic field the correlation functions are again independent on the boundary conditions and decay exponentially fast with probability 1. We also prove that the averaged magnetization of the ground state configuration of the one-dimensional Ising model with random magnetic field is zero, no matter how small is the variance of theh i .  相似文献   

12.
In this paper, we study the correlation between the expansion speed of two-ribbon flares and the magnetic field measured in the ribbon location, and compare such correlation for two events with different magnetic configurations. These two events are: an M1.0 flare in the quiet sun on September 12, 2000 and an X2.3 flare in Active Region NOAA 9415 on April 10, 2001. The magnetic configuration of the M1.0 flare is simple, while that of X2.3 event is complex. We have derived a power-law correlation between the ribbon expansion speed (V r ) and the longitudinal magnetic field (B z ) with an empirical relationship V r = A×B- z δ , where A is a constant and δ is the index of the power-law correlation. We have found that δ for the M1.0 flare in the simple magnetic configuration is larger than that for the X2.3 flare in the complex magnetic configuration.  相似文献   

13.
Abstract

Present paper is an overview of our efforts during the past few years to understand complicated corelations of physical phenomena related to pressure in Fe(I1) solid state spin transition systems. Some principal results concerning p, T, λ-experiments are extracted. In the context of correlation of the crystallographic phase transition with simultaneous HS → LS relaxation and LS → HS photopopulation, we show the latest results: Brillouin and magnetic measurements on the crystal [Fe(pt6](BF6)2.  相似文献   

14.
Following Pevtsov and Latushko, we study the current helicity pattern of the large-scale magnetic field on the photosphere. We use the same technique as theirs to derive the vector magnetic field (B r , B θ , B ϕ ) from full-disk longitudinal magnetograms based on the assumption that large-scale magnetic fields evolve rather slowly and the variations of the longitudinal magnetic fields within certain time duration are caused by the changing position angles only. Different from their study, we have calculated the current helicity maps directly from the derived vector magnetograms, rather than from obtaining the latitudinal variation of h c by ignoring the role of B θ component and averaging B r and B ϕ over all solar longitudes. This approach significantly strengthens the evidence of the hemispheric rule presented in the reconstructed vector magnetic field. Our study shows that the established hemispheric sign rule, that is, positive helicity sign in the southern hemisphere and negative helicity sign in the northern hemisphere, is applicable everywhere in the global magnetic field, namely, also evident in weak fields outside active regions, and that the obtained sign pattern is independent of the longitudinal magnetograms and the parameters that we have used.  相似文献   

15.
RMn2O5 (R=lanthanide, Bi, Y) multiferroic compounds are intensively studied for their potential application in the spintronic field. In these systems, the key issue is to understand the origin of the strong coupling between the ferroelectric and magnetic orders and to investigate the influence of the nature of the R ions in this coupling. While the phase diagram of RMn2O5 compounds with small R size is well established, this of large R size compounds is missing due to the lack of samples originating with difficulties of synthesis. We present in this paper the first investigation of the thermodynamic, structural and magnetic properties of high quality polycrystalline PrMn2O5 samples. Our work shows that PrMn2O5 presents two magnetic transitions corresponding to commensurate magnetic orderings. We also evidence a weak lattice effect coupled to the magnetic order. Our results point out that the physical properties of PrMn2O5 differ from those of the parent compounds with magnetic R ions.  相似文献   

16.
We present here a review of the spin fluctuation theory and of its applications to transition and actinide systems, with a particular emphasis to the latter where some very anomalous properties find an explanation in terms of spin fluctuation effects. Firstly, we summarize the development of the spin fluctuation model which had been initially applied to transition metals and alloys such as palladium or Pd–Ni alloys. Then, we present the extension of the paramagnon model to nearly magnetic actinide systems by taking into account explicitly the temperature dependence of the Stoner susceptibility, because the 5f-band of actinides is much narrower than the d-band of transition metals. As a result the paramagnon contribution to the resistivity departs from the usual T 2 and T power laws at temperatures higher than the spin fluctuation one and saturates at high temperatures, with eventually the presence of a maximum at intermediate temperatures. We present also the calculation of the other properties of actinide systems, namely the thermal resistivity, the thermoelectric power, the magnetic susceptibility, the specific heat capacity and the NMR relaxation rate, which are generally enhanced by the presence of paramagnons. Finally, we have introduced the concept of ‘antiferromagnetic-like’ spin fluctuations which have a maximum of the q-dependent susceptibility χ(q) at a q value different from q =0, in contrast to the regular ferromagnetic spin fluctuations; both types of spin fluctuation give the same resistivity behaviour, while they yield a markedly different behaviour of the magnetic susceptibility, in agreement with experiment. The spin fluctuation theory is applied successfully to the different properties of neptunium and plutonium metals and of many nearly magnetic compounds such as UAl2.  相似文献   

17.
In this article we present the time evolution of the electronic spin and subbands states, of an electron in an anisotropic two dimensional Rashba quantum dot, to which a magnetic field of arbitrary strength is applied. We also explicitly include the confining (gate) effects as a two dimensional anisotropic harmonic oscillator. From the governing Hamiltonian we compute the time evolution of the initial state, leading to spin and subbands averages as functions of time. Our results indicate that the spin, on the average, precesses about the magnetic field, on an ellipse with intrinsic wobbling. The subbands populations, similar to the case of atom-photon interaction, follow the pattern of collapse–revivals.  相似文献   

18.
We show that non-frustrated and frustrated ladders in a magnetic field can be systematically mapped onto an XXZ Heisenberg model in a longitudinal magnetic field in the limit where the rung coupling is the dominant one. This mapping is valid in the critical region where the magnetization goes from zero to saturation. It allows one to relate the properties of the critical phase (H c 1, H c 2, the critical exponents) to the exchange integrals and provide quantitative estimates of the frustration needed to create a plateau at half the saturation value for different models of frustration. Received: 7 May 1998 / Revised and Accepted: 10 July 1998  相似文献   

19.
We have investigated the validity of doping with a vacancy the J1J3 frustrated Heisenberg model on a finite square lattice as a way to test the existence of fractional spin excitations. Using a generalized tJ1J3 model we have computed the vacancy spectral functions in the self-consistent Born approximation. We have found that by including spiral fluctuations in the magnetic ground state, the spectral functions on finite systems agree very well with the unbiased exact ones. In contrast to the recent proposal that the quasiparticle weight reduction could be a signal of a spinon free excitation in finite systems, we have found strong evidence that such a reduction is due to the existence of spiral fluctuations.  相似文献   

20.
An ideal antiferromagnetic (AF) ordering of the spins of the CuO layers of an underdoped cuprate prevents the low energy tunneling of the charge carriers between the layers. In order to obtain a non-vanishing c-axis conductivity (σc), we invoke ground state fluctuations of the spin system. These provide a frequency-dependent gating effect by changing the direction of the AF order parameter within one layer relative to that in a neighboring layer, thereby permitting some tunneling. The calculated σc compares favorably with experimental data in a) being small and b) having a weak frequency dependence of distinctly non-Drude form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号