首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Self-assembled aggregates of guanosine 5′-monophosphate (GMP) on the surface of muscovite mica were investigated by atomic force microscopy (AFM). Aqueous solutions of sodium, potassium and ammonium GMP salts were studied. For solution concentrations c < 0.005 wt% only small islands of deposited material are present on the surface. For c  0.02 wt%, in addition to the islands and patches, also linear aggregates called G-wires are formed. The wire-like aggregates are on average 1.9 nm high and can be several micrometers long. They exhibit a profound directional growth along the six main crystallographic axes of the basal plane of mica. For c > 0.1 wt% flat terraces with the height of 2.5 nm appear. They are formed of G-wires lying with their long axis parallel to the substrate and stacking in a hexagonal arrangement. The morphology of the adsorbates is independent of the type of salt used to prepare the initial solution. This signifies that intrinsic potassium ions from the substrate play much more important role in the GMP adsorption than cations from the solution.  相似文献   

2.
Monoatomic X- (X = O, S) chalcogen centers in MZ (M = Na, K, Rb and Z = Cl, Br, I) alkali halide lattices are investigated within the framework of density functional theory with the principal aim to establish defect models. In electron paramagnetic resonance (EPR) experiments, X- defects with tetragonal, orthorhombic, and monoclinic g-tensor symmetry have been observed. In this paper, models in which X- replaces a single halide ion, with a next nearest neighbor and a nearest neighbor halide vacancy, are validated for the X- centers with tetragonal and orthorhombic symmetry, respectively. As such defect models are extended, the ability to reproduce experimental data is a stringent test for various computational approaches. Cluster in vacuo and embedded cluster schemes are used to calculate energy and EPR parameters for the two vacancy configurations. The final assignment of a defect structure is based on the qualitative and quantitative reproduction of experimental g and (super)hyperfine tensors.  相似文献   

3.
Molecular dynamics simulations were conducted to predict the structural properties and phase transition temperatures of n-alkanethiols CH(3)(CH(2))(n-1)SH (Cn, 4 ≤ n ≤ 22) self-assembled monolayers (SAMs) on Au (111) surfaces. We studied the effects of chain length on the structural properties, including tilt and orientation angles, and on phase transition temperature. We found clear dependence of the structural properties, on both the number of carbon atoms, n; and on n being odd or even. Alkanethiols with n ≤ 7 show liquid-like behavior and large rotational mobility, whereas those with n ≥ 12 are well-ordered and stable. For 12 ≤ n ≤ 15, odd-even effects are observed, where for n = odd, larger tilt angles, oriented in the direction of their next next nearest neighbor (NNNN), and for n = even, lower tilt angles, mostly tilted toward next nearest neighbor (NNN), were observed. For 15 ≤ n ≤ 19, we find tilt angle and orientation to be independent of n. For all alkanethiols, a gradual decrease of the tilt angle occurred by increasing the temperature from 300 to 420 K. Order-disorder phase transitions occurred at a certain temperature. This was signified by abrupt instabilities in the tilt orientation angle. This transition temperature showed an enhancement of ~67-100 °C over the melting point of the corresponding n-alkane bulk system. This enhancement depended on n, and was larger for n = odd. Overall, we found that odd alkanethiols show better structural and thermal stability, and smaller gauche defects.  相似文献   

4.
The origin of magnetism induced by vacancies on BaTiO(3)(001) surfaces is investigated systematically by first-principles calculations within density-functional theory. The calculated results show that O vacancy is responsible for the magnetism of the BaO-terminated surface and the magnetism of the TiO(2)-terminated surface is induced by Ti vacancy. For the BaO-terminated surface, the magnetism mainly arises from the unpaired electrons that are localized in the O vacancy basin. In contrast, for the TiO(2)-terminated surface, the magnetism mainly originates from the partially occupied O-2p states of the first nearest neighbor O atoms surrounding the Ti vacancy. These results suggest the possibility of implementing magneto-electric coupling in conventional ferroelectric materials.  相似文献   

5.
Using an atomic force microscope (AFM) the interaction between an AFM tip and different planar solid surfaces have been measured across a long-chain poly(dimethyl siloxane) (PDMS, MW = 18,000 g/mol), a short-chain PDMS (MW = 4200 g/mol), a poly(ethylmethyl siloxane) (PEMS, MW = 16,800 g/mol), and a diblock copolymer consisting of one PDMS and one PEMS block (PDMS-b-PEMS, MW = 15,100 g/mol). The interaction changed significantly during the first 10 h after immersing the solids in the polymer melt. This demonstrates that the time scale of structural changes at a solid surface is much slower than in the bulk. On mica and silicon oxide both polymers formed an immobilized “pinned” layer beyond which a monotonically decaying repulsive force was observed. Attractive forces were observed with short-chain PDMS on silicon oxide and PEMS on mica and silicon oxide. On the basal plane of graphite PEMS caused a stable, exponentially decaying oscillatory force.  相似文献   

6.
用于扫描探针显微镜研究的原子级平整金基底的制备   总被引:1,自引:0,他引:1  
报导了一种用于扫描深外显微镜(SPM)研究的原子级平整全基底的制备方法.采用这种方法,得到了25um2范围内,膜的平均粗糙度小平0.4nm的原子级平整基底,并且得到金以(111)面取向在云母表面沉积的实验证据,同时使用电化学循环伏安法和X光电子能谱对这种膜的自组装性能进行了考察.  相似文献   

7.
The introduction of microelectronics technology in the area of biological sciences has brought forth previously unforeseeable applications such as DNA or protein biochips, miniaturized, multiparametric biosensors for high performance multianalyte assays, DNA sequencing, biocomputers, and substrates for controlled cell growth (i.e. tissue engineering). We developed and investigated a new method using “cold” excimer laser beam technology combined with microlithographical techniques to create surfaces with well defined 3D microdomains in order to delineate critical microscopic surface features governing cell–material interactions. Microfabricated surfaces with microgrooves 30–3 μm deep, 10–1 μm wide spaced 30 μm apart were obtained with micron resolution, by “microsculpturing” polymer model surfaces using a computer controlled laser KrF excimer beam coupled with a microlithographic projection technique. The laser beam after exiting a mask was focused onto the polymer target surface via an optical setup allowing for a 10-fold reduction of the mask pattern. Various 3D micropatterned features were obtained at the micron level. Reproducible submicron features could also be obtained using this method. Subsequently, model human umbilical endothelial cells (HUVEC) were cultured on the laser microfabricated surfaces in order to study the effects of specific microscopic surface features on cell deposition and orientation. Cell deposition patterns were found to be microstructure dependant, and showed cell orientation dependency for features in the cell range dimension, a behaviour significantly different from that of a previously studied cell model (osteoprogenitor cell). This model may be a promising in so far as it is very rapid (a time frame less than a second per square centimeter of micropatterned surface) and provides further insights into the effects of surface microtopography on cell response with possible applications in the field of biosensors, biomedical and/or pharmaceutical engineering sciences.  相似文献   

8.
A single-labeled peptide probe for measuring peptide phosphorylation status was developed by using a phosphate sensitive terbium chelate. The activity of Abl protein tyrosine kinase and T-cell protein Tyrosine phosphatase (TC PTP) was monitored in real time. To study the probe design in detail, variable substrate peptide sequences, where the enzyme target site was located from two to five amino acids apart from the nearest tyrosine residue, were synthesized. The maximum change observed in fluorescence intensity after phosphorylation was up to 320%, when the phosphorylated tyrosine was located two amino acids from the lysine coupled to the phosphate sensitive terbium chelate, demonstrating an excellent performance for a homogeneous assay. Also the longer distance of five amino acids between the phosphorylated tyrosine residue and terbium chelate resulted up to 260% change in fluorescence intensity.
Figure
A principle of the short peptide probe (EAI?\Y?\AAPFAK) with phosphate sensitive terbium chelate attached to the lysine side chain is described, which is proved applicable to measure in real time Abl protein tyrosine kinase and T?\cell protein tyrosine phosphatase activities. Enhancement of the terbium fluorescence could be measured upon addition of a phosphor residue to the nearby tyrosine side chain. The opposite effect could be measured, when phosphor residue is removed by protein tyrosine phosphatase.  相似文献   

9.
Interactions between two layered silicate sheets, as found in various nanoscale materials, are investigated as a function of sheet separation using molecular dynamics simulation. The model systems are periodic in the xy plane, open in the z direction, and subjected to stepwise separation of the two silicate sheets starting at equilibrium. Computed cleavage energies are 383 mJ /m(2) for K-mica, 133 mJ /m(2) for K-montmorillonite (cation exchange capacity=91), 45 mJ /m(2) for octadecylammonium (C(18))-mica, and 40 mJ /m(2) for C(18)-montmorillonite. These values are in quantitative agreement with experimental data and aid in the molecular-level interpretation. When alkali ions are present at the interface between the silicate sheets, partitioning of the cations between the surfaces is observed at 0.25 nm separation (mica) and 0.30 nm separation (montmorillonite). Originally strong electrostatic attraction between the two silicate sheets is then reduced to 5% (mica) and 15% (montmorillonite). Weaker van der Waals interactions decay within 1.0 nm separation. The total interaction energy between sheets of alkali clay is less than 1 mJ /m(2) after 1.5 nm separation. When C(18) surfactants are present on the surfaces, the organic layer (>0.8 nm) acts as a spacer between the silicate sheets so that positively charged ammonium head groups remain essentially in the same position on the surfaces of the two sheets at any separation. As a result, electrostatic interactions are efficiently shielded and dispersive interactions account for the interfacial energy. The flexibility of the hydrocarbon chains leads to stretching, disorder, and occasional rearrangements of ammonium head groups to neighbor cavities on the silicate surface at medium separation (1.0-2.0 nm). The total interaction energy amounts to less than 1 mJ /m(2) after 3 nm separation.  相似文献   

10.
We report a study of the structure of phosphorylcholine self-assembled monolayers (PC-SAMs) on Au(111) surfaces using both molecular mechanics (MM) and molecular dynamics (MD) simulation techniques. The lattice structure (i.e., packing densities and patterns) of the PC chains was determined first, by examining the packing energies of different structures by MM simulations in an implicit solvent. The chain orientation (i.e., antiparallel and parallel arrangements of the PC head groups) was then evaluated. The initial azimuthal angles of the PC chains were also adjusted to ensure that the optimal lattice structure was found. Finally, the two most probable lattice structures were solvated with explicit water molecules and their energies were compared after 1.5 ns of MD simulations to verify the optimal structures obtained from MM. We found that the optimal lattice structure of the PC-SAM corresponds to a radical7 x radical7 R19degree lattice structure (i.e., surface coverage of 50.4 A(2)molecule) with a parallel arrangement of the head groups. The corresponding thickness of the optimal PC-SAM is 13.4 A which is in agreement with that from experiments. The head groups of the PC chains are aligned on the surface in such a way that their dipole components are minimized. The P-->N vector of the head groups forms an angle of 82 degrees with respect to the surface normal. The tilt direction of molecular chains was observed to be towards their next nearest neighbor.  相似文献   

11.
Surface oxygen vacancy defects of mesoporous CeO2 nanosheets assembled microspheres(D-CeO2) are engineered by polymer precipitation, hydrothermal and surface hydrogenation strategies. The resultant D-CeO2 with a main pore diameter of 9.3 nm has a large specific surface area(~102.3 m2/g) and high thermal stability. The mesoporous nanosheets assembled microsphere structure prevents the nanosheets from aggregation, which is beneficial to effective mass tr...  相似文献   

12.
13.
The nearest neighbor radial and orientation distributions of CO2 molecules at liquid like density were calculated. The analysis of the average distance, the width and the amount of overlap between these distributions provides more insight on the local structure. Particularly, the results are in accordance with geometry of the dimmer and of the trimmer of CO2 predicted by ab initio and deduced from experiments. Furthermore, they suggest that the class of neighbor number 3 with respect to a reference molecule characterizes the position of the cage.  相似文献   

14.
Gastrodin is a bioactive constituent of rhizome in Gastrodia elata Blume (Orchidaceae) The aim of this study is to develop a rapid and sensitive liquid chromatographic method coupled to microdialysis sampling system to measure the unbound of gastrodin in rat blood, brain and bile. Microdialysis probes were simultaneously inserted into the jugular vein, brain striatum and bile duct of each anesthetized rat for sampling after the administration of gastrodin (100 or 300 mg kg−1) through the femoral vein. Separation of unbound gastrodin from various biological fluids was applied to an RP-select B column (250 mm × 4.6 mm i.d., 5 μm). The mobile phase consisted of acetonitrile–50 mM potassium dihydrogen phosphate buffer–triethylamine (5:95:0.1, v/v/v, adjusted to pH 2.5 with orthophosphoric acid) with a flow rate of 1 mL min−1. The UV detector wavelength was set at 221 nm. Fifteen minutes after the administration, the gastrodin reached the peak concentration in brain and bile. In addition, the results indicate that gastrodin penetrates the blood-brain barrier (BBB) and goes through hepatobiliary excretion.  相似文献   

15.
孙静  李强  林鲲  刘占宁  邢献然 《无机化学学报》2019,35(11):2073-2077
制备了尺寸为4 nm的HfO2纳米颗粒,并借助X射线原子对分布函数方法,研究了尺寸约4 nm和体相HfO2颗粒的晶格热膨胀。结果表明,在纳米尺度的HfO2中,晶格沿a,c轴的热膨胀性增大,b轴热膨胀性稍微减小,体积热膨胀性增大。同时纳米HfO2晶格热膨胀的各向异性比体相大。该现象是由于尺寸效应导致结构畸变变大,尤其是次近邻Hf-O-Hf键角减小,随后升温过程中该畸变发生热弛豫趋向恢复至平衡位置导致的。  相似文献   

16.
The polyproline II (PPII) conformation is dominant in short alanine oligomers. The noncooperativity of PPII structure in alanine peptides indicates that PPII in water is locally determined and that alanine neighbors are consistent with Flory's isolated pair hypothesis. However, neighbor effects from beta-branched or bulky aromatic residues tend to increase the Phi angle of the nearest neighbor as observed in coil library data. Here we demonstrate directly the neighbor effect using short alanine model peptides GGAAAGG, GGLnALnGG (Ln is norleucine), GGIAAGG, and GGIAIGG. The far-UV CD spectra, NMR 3JalphaN coupling constant, and H-D hydrogen exchange measurements reveal that Ile reduces the PPII content of the probe Ala side chain relative to Ala or norLeu. The free energy differences are consistent with predictions from electrostatic solvation free energy (ESF) calculations. The results indicate that prediction of PPII propensities or scales requires including the neighbor effect.  相似文献   

17.
Femtosecond laser pump–probe techniques are employed to investigate the mechanisms and dynamics of the photodissociation of HMX and RDX from their excited electronic states at three wavelengths (230 nm, 228 nm, and 226 nm). The only observed product is the NO molecule. Parent HMX and RDX ions are not observed. The NO molecule has a resonant A2Σ ← X2Π (0, 0) transition at 226 nm and off-resonance two-photon absorption at 228 nm and 230 nm. Pump–probe transients of the NO product at both off-resonance and resonance absorption wavelengths indicate the decomposition dynamics of HMX and RDX falls into the timescale of our laser pulse duration (180 fs).  相似文献   

18.
Ordered assembly of collagen molecules on flat substrates has potential for various applications and serves as a model system for studying the assembly process. While previous studies demonstrated self-assembly of collagen on muscovite mica into highly ordered layers, the mechanism by which different conditions affect the resulting morphology remains to be elucidated. Using atomic force microscopy, we follow the assembly of collagen on muscovite mica at a concentration lower than the critical fibrillogenesis concentration in bulk. Initially, individual collagen molecules adsorb to mica and subsequently nucleate into fibrils possessing the 67 nm D-periodic bands. Emergence of fibrils aligned in parallel despite large interfibril distances agrees with an alignment mechanism guided by the underlying mica. The epitaxial growth was further confirmed by the formation of novel triangular networks of collagen fibrils on phlogopite mica, whose surface lattice is known to have a hexagonal symmetry, whereas the more widely used muscovite does not. Comparing collagen assembly on the two types of mica at different potassium concentrations revealed that potassium binds to the negatively charged mica surface and neutralizes it, thereby reducing the binding affinity of collagen and enhancing surface diffusion. These results suggest that collagen assembly on mica follows the surface adsorption, diffusion, nucleation, and growth pathway, where the growth direction is determined at the nucleation step. Comparison with other molecules that assemble similarly on mica supports generality of the proposed assembly mechanism, the knowledge of which will be useful for controlling the resulting surface morphologies.  相似文献   

19.
The dispersion of the lowest lying singlet electron–hole excitation of pentacene along the reciprocal lattice vector (1 0 0) has been studied using electron energy-loss spectroscopy. This exciton shows a clear dispersion along the direction with a band width of about 100 meV. Moreover, the translational symmetry indicated by the exciton band structure does not agree with that reported from diffraction studies. This might be related to the interaction responsible for the dispersion which is of next nearest neighbor type only.  相似文献   

20.
Potassium ion mediated collagen microfibril assembly on mica   总被引:1,自引:0,他引:1  
Potassium ion can critically effect the interaction between collagen microfibrils and mica leading to different ordered structures that vary dramatically with changing ion concentration. AFM images of the structures formed at different ion concentrations appear to be intermediate stages in the progression from disordered to ordered film. At 200 mM potassium ion concentration, a nanometer-thick array of aligned and bundled microfibrils covering large areas can be created easily and reproducibly on mica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号