首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We investigated the structures of ionic liquids (1-butyl-3-methylimidazolium iodide [BMIM][I] and 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]) and their aqueous mixtures using attenuated total reflection (ATR) infrared absorption and Raman spectroscopy. The ATR spectrum in the CHx (x = 1, 2, 3) vibration region from 2800 to 3200 cm-1 was very different between [BMIM][BF4] and [BMIM][I] even though all the spectral features in this region were from the butyl chain and the imidazolium ring of the same cation. The spectrum did not change appreciably irrespective of the water concentration for [BMIM][BF4], whereas the spectrum from [BMIM][I] showed significant changes as the water concentration was increased, especially in CH-vibration modes from the imidazolium ring. For very diluted solutions both aqueous mixtures of [BMIM][I] and [BMIM][BF4] showed very similar spectra. Mixing of [BMIM][I] with heavy water (D2O) facilitated the isotopic exchange of the proton attached to the most acidic carbon of the imidazolium ring into deuterium from D2O, whereas even prolonged exposure to D2O did not induce any isotopic exchange for [BMIM][BF4]. Raman spectra around 600 cm(-1) indicative of the butyl chain conformation also changed differently as the water concentration was increased between [BMIM][I] and [BMIM][BF4]. These differences are considered to come from the variation in the position of the anion, where I- is expected to be closer to the C(2) hydrogen of the imidazolium cation and interacting more specifically as compared to BF(4-).  相似文献   

2.
选用1-乙烯基-3-乙基咪唑四氟硼酸盐([VElm]BF4,一种离子液体)作为功能单体,以Co2+为介导离子,结合1-丁基-3-甲基咪唑四氟硼酸盐([BMIM]BF4)/二甲基亚砜(DMSO)二元致孔体系制备了绿原酸印迹整体柱。经过对制备参数的考察,确定最佳比例为绿原酸:Co2+:[VElm]BF4:EDMA(乙二醇二甲基丙烯酸酯)(摩尔比)=1:1:5:20,[BMIM]BF4:DMSO=3:1(V/V),最大印迹因子达2.10。通过优化色谱条件,最终在乙腈:20 mmol/L乙酸钠缓冲液(pH 4.2)=70:30(V/V)时实现了绿原酸及其类似物的完全分离。由此可见,以离子液体为功能单体及致孔剂,在金属介导策略下制备的分子印迹聚合物可实现绿原酸的特异性识别及分离。  相似文献   

3.
A novel monolithic stationary phase with mixed mode of hydrophilic and strong anion exchange (SAX) interactions based on in situ copolymerization of pentaerythritol triacrylate (PETA), N,N‐dimethyl‐N‐methacryloxyethyl N‐(3‐sulfopropyl) ammonium betaine (DMMSA) and a selected quaternary amine acrylic monomer was designed as a multifunctional separation column for CEC. Although the zwitterionic functionalities of DMMSA and hydroxy groups of PETA on the surface of the monolithic stationary phase functioned as the hydrophilic interaction (HI) sites, the quaternary amine acrylic monomer was introduced to control the magnitude of the EOF and provide the SAX sites at the same time. Three different quaternary amine acrylic monomers were tested to achieve maximum EOF velocity and highest plate count. The fabrication of the zwitterionic monolith (designated as HI and SAX stationary phase) was carried out when [2‐(acryloyloxy)ethyl]trimethylammonium methylsulfate was used as the quaternary amine acrylic monomer. The separation mechanism of the monolithic column was discussed in detail. For charged analytes, a mixed mode of HI and SAX was observed by studying the influence of mobile phase pH and salt concentration on their retentions on the poly(PETA‐co‐DMMSA‐co‐[2‐(acryloyloxy)ethyl]trimethylammonium methylsulfate) monolithic column. The optimized monolith showed good separation performance for a range of polar analytes including nucleotides, nucleic acid bases and nucleosides, phenols, estrogens and small peptides. The column efficiencies greater than 192 000 theoretical plates/m for estriol and 135 000 theoretical plates/m for charged cytidine were obtained.  相似文献   

4.
Determination of an acidic scale in room temperature ionic liquids   总被引:18,自引:0,他引:18  
The acidity scale of different Br?nsted acids in ionic liquids such as [BMIM][NTf2], [BMIM][BF4], and [BMMIM][BF4] has been investigated by determination of Hammett functions, using a spectrophotometric indicator method. This scale should permit one to correlate the acidity strength of ionic liquid systems with their ability to achieve acid-catalyzed reactions.  相似文献   

5.
离子液体体系中离子型锰卟啉对苯乙烯的催化氧化   总被引:2,自引:0,他引:2  
以单氧给体乙酰碘苯[PhI(OAc)2]为氧源, 在无需轴向配体和有机溶剂的参与下, 离子型锰卟啉[MnⅢ(BF4)T(N-Me-4-Py)P][BF4]4和离子液体 [BMIM]BF4组成的多元离子液体体系, 在温和的反应条件下对苯乙烯的催化氧化表现出较高的活性(87%)和环氧苯乙烷选择性(90%), 并且有较好的底物普适性. 构筑的锰卟啉多元离子液体体系可以一定程度上抑制卟啉聚合和氧化降解等反应.  相似文献   

6.
Monolithic columns have been prepared with a novel bonded silica stationary phase, tetradecylamine bonded silica (TDAS), and used in pressurized capillary electrochromatography (pCEC). The monolithic silica column matrix was prepared by a sol-gel process and then chemically modified with the spacer (3-glycidoxypropyl)trimethoxysilane and tetradecylamine. The introduced embedded polar amine groups dominated the charge on the surface of the monolithic stationary phase and generated an EOF from cathode to anode under acidic conditions. The tetradecyl hydrophobic chains in TDAS provide chromatographic interactions. The chromatographic characteristics of the prepared monolithic column were studied. Some aromatic compounds including alkylbenzenes, aromatic hydrocarbons, phenols, and anilines were successfully separated on the TDAS monolithic column in pCEC mode. As expected, the TDAS monolithic stationary phases exhibit typical reversed-phase electrochromatographic behavior toward neutral solutes due to the introduced tetradecyl groups. Hydrophobic as well as electrophoretic migration processes within the monoliths were observed in the separation of basic anilines. Symmetrical peaks can be obtained for anilines because the embedded polar amine groups on the surface can effectively shield the adsorption of positively charged analytes onto the stationary phase.  相似文献   

7.
Ye F  Xie Z  Wu X  Lin X  Chen G 《Journal of chromatography. A》2006,1117(2):170-175
A novel stationary phase phenylaminopropyl silica (PhA-silica) monolith was successfully prepared for pressure assisted capillary electrochromatography (pCEC). The monolithic silica matrix from a sol-gel process was chemically modified by using [3-(phenylamino)propyl]trimethoxysilane as surface modification reagent to produce the phenylaminoporpyl function. The secondary amino groups on the surface of the monolithic stationary phase contributed to the generation of anodic electroosmotic flow (EOF) under acidic conditions. The phenyl group together with the spacer (-(CH(2))(3)-) in PhA-silica provides sufficient hydrophobic properties. To evaluate the column performance, effects of buffer pH and mobile phase composition on the mobile phase linear velocity and the retention factors of alkylbenzenes, phenols and anilines were investigated in pCEC mode. The monolithic stationary phases exhibit typical reversed-phase (RP) electrochromatographic behavior toward neutral solutes. Hydrophobic as well as electrophoretic migration process within the monoliths was observed for the separation of basic solutes such as anilines without peak tailing.  相似文献   

8.
A novel monolithic silica column that has a polar‐embedded amide‐secondary amine group linking with C16 functionality for RP‐CEC is described. The amide‐secondary aminealkyloxysilane was synthesized by the reaction of 3‐(2‐aminoethylamino) propyltrimethoxysilane with hexadecanoyl chloride. Then, the silylant agent was bonded to the silica monolith matrix to produce hexadecanamide‐secondary amine bonded silica (HDAIS) monolithic column. The electrochromatographic performance of HDAIS monolithic column for the separation of neutral, basic and polar solutes was studied, which was compared to that using the hexadecyl bonded silica monolithic column. The HDAIS monolithic column displayed reduced hydrophobic retention characteristics in the separation of five hydrophobic n‐alkylbenzenes and four polar phenols when compared to the hexadecyl bonded silica monolithic column. A very much reduced silanol activity of HDAIS monolithic column was observed in the separation of test basic mixture including four aromatic amines, atenolol and metoprolol with 10 mM borate buffer (pH 7.5) containing 30% v/v ACN as the mobile phase. The comparison results indicate good performance for both polar and basic mixtures on HDAIS monolithic column in RP‐CEC, and also show promising results for further applications.  相似文献   

9.
Reaction of [ArN(2)][BF(4)] salts immobilized in [BMIM][PF(6)] ionic liquid (IL) with TMSX (X = I, Br) and TMSN(3) represents an efficient method for the preparation of iodo-, bromo-, and azido-derivatives via dediazoniation. The reactions can also be effected starting with ArNH(2) by in situ diazotization with [NO][BF(4)] followed by reaction with TMSX or TMSN(3). Depending on the substituents on the benzenediazonium cation, competing fluorodediazoniation (ArF formation) and hydrodediazoniation (ArH formation) were observed. Dediazoniation with TMSN(3) and with TMSI generally gave the highest chemoselectivity toward ArN(3) and ArI formation. The IL was recycled and reused up to 5 times with no appreciable decrease in the conversions. Multinuclear NMR monitoring of the interaction of [ArN(2)][BF(4)]/TMSX, [BMIM][PF6]/TMSX, and [BMIM][PF(6)]/TMSX/[ArN(2)][BF(4)] indicated that TMSF is formed primarily via [ArN(2)][BF(4)]/TMSX, generating [ArN(2)][X] in situ, which gives ArX on dediazoniation. Competing formation of ArF in Sandmeyer-type bromodediazoniation of [ArN(2)][BF(4)] with Cu(I)Br immobilized in the IL points to significant involvement of heterolytic dediazoniation.  相似文献   

10.
The expression of recombinant proteins in microorganism frequently leads to the formation of insoluble aggregates, inclusion bodies (IBs). Thus, the additional in vitro protein refolding process is required to convert inactive IBs into water-soluble active proteins. This study investigated the effect of sulfur residue and hydrophobicity of imidazolium-based room temperature ionic liquids (RTILs) on the refolding of lysozyme as a model protein in the batch dilution method which is the most commonly used refolding method. When lysozyme was refolded in the refolding buffer containing [BF4]-based RTILs with a systematic variety of alkyl chain on cations varying from two to eight, less hydrophobic imidazolium cations having shorter alkyl chains were effective to facilitate lysozyme refolding. Compared to the conventional refolding buffer, 2 times higher lysozyme refolding yield was obtained in 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) containing refolding buffer. The refolding yield of lysozyme was even more increased by 2.5 times when 1-butyl-3-methylimidazolium methylsulfate ([BMIM][MS]) containing sulfur residue on anion was used. The sulfur residue in [BMIM][MS] is supposed to improve the refolding yield of lysozyme which has 4 intramolecular disulfide bonds. For dilution-based refolding of lysozyme, the optimum concentrations of RTILs in refolding buffer were found to be 1.0 M [EMIM][BF4] and 0.5 M [BMIM][MS], respectively. The optimum temperate for dilution-based refolding of lysozyme with RTILs was 4 °C.  相似文献   

11.
Tian Y  Zhang L  Zeng Z  Li H 《Electrophoresis》2008,29(4):960-970
A novel calix[4] open-chain crown ether (p-tert-butylcalix[4]arene-1,3-bis(allyloxyethy) ether)-modified, organic-inorganic hybrid silica-based monolithic column possessing vinyl ligands for CEC is described. The monolithic silica matrix containing a vinyl functionality was synthesized by in situ cocondensation of tetramethoxysilane (TMOS) and vinyltrimethoxysilane (VTMS) via sol-gel process and chemically modified with calix[4] open-chain crown ether by free radical polymerization procedure using alpha, alpha'-azobisisobutyronitrile (AIBN) as an initiator. Morphology of the monolithic column was examined by SEM and the successful incorporation of calix[4] open-chain crown ether to the vinyl-hybrid monolith was characterized by infrared (IR) spectra. Compared with an unmodified vinyl-hybrid monolithic column, slightly stronger EOF at pH >7.5 was observed for this monolithic column due to the ionization of phenolic hydroxyls on the lower rim of calix[4]arene. VTMS/TMOS ratios in the reaction mixture were varied and 1:4 was found to be optimum to obtain homogeneous monolith with good permeability. The performance of the column was evaluated by nucleotides, beta-blockers, neurotransmitters, and PAHs as test solutes and compared with that of unmodified vinyl-hybrid monolithic column. Greatly improved column performance was obtained due to the host-guest interaction and intermolecular hydrogen bonding provided by the calix[4] open-chain crown ether moiety. The column efficiencies for neurotransmitters and nucleotides are up to 120 000 and 110 000 plates/m, respectively. Migration time and theoretical plate number reproducibilities were reasonable with RSDs less than 1.0 and 1.8% each for within column runs and not more than 7.2 and 8.6% each for column-to-column measurements, using four nucleotides as test solutes.  相似文献   

12.
EOF measurements, by using 1,4-di-(4-aza-1-azonia-bicyclo[2.2.2]octane)butane diiodide, barium and strontium tetraborate as silica wall modifiers, are reported and, as an example of application, analysis of PEG (PEG 400-2000) polydisperse preparations in free solution CZE is shown. PEGs have been derivatized with phthalic anhydride so as to form singly or doubly charged derivatives with strong UV absorbance at 214 nm. Whereas separations in plain tetraborate buffer, pH 9.0, without any EOF control, did not lead to good resolution of all-size oligomers and suffered from long analysis times, excellent resolution of all oligomers up to 40 ethylene oxide (EO) units could be obtained under EOF control. Such EOF modulation was engendered by addition of 1 mM M7C4M7, a doubly charged organic cation able to stick tenaciously to the silica wall. Further modulation of EOF and silica surface modification could be achieved also by addition of inorganic cations, notably those of group II, whereas monovalent cations did not seem to affect much the EOF flux. Among the doubly charged cations investigated, Ca++, Mg++, Sr++ and Ba++, the latter did seem to offer best EOF control and reproducible runs. A judicious blend of M7C4M7 (0.33-1 mM range) with barium (10-20 mM range) allowed baseline resolution of all PEG oligomers investigated up to PEG 2000 and >40 EO units in length. In this last case, best results in terms of reproducibility and separation efficiency of the more heavy homologues were obtained using Li+ salt in small amounts.  相似文献   

13.
Research on Chemical Intermediates - Thermochemical conversion of guaifenesin was performed in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] ionic liquid at...  相似文献   

14.
Single-crystalline Bi(2)S(3) and Sb(2)S(3) nanorods have been successfully synthesized by the microwave-assisted ionic liquid method. The starting reagents were Bi(2)O(3) or Sb(2)O(3), HCl, Na(2)S(2)O(3), and ethylene glycol (EG) or ethanolamine, and the ionic liquid used was 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF(4)]). Our experiments showed that the ionic liquid played an important role in the morphology of M(2)S(3) (M = Bi, Sb). Single-crystalline Bi(2)S(3) nanorods could be prepared in the presence of [BMIM][BF(4)]. However, urchinlike Bi(2)S(3) structures consisting of nanorods were formed without using [BMIM][BF(4)]. Single-crystalline Sb(2)S(3) nanorods were obtained in the presence of [BMIM][BF(4)]. However, single-crystalline Sb(2)S(3) nanosheets could be prepared in the absence of [BMIM][BF(4)]. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and electron diffraction (ED).  相似文献   

15.
In this work, a novel molecularly imprinted polymer (MIP) monolithic column with integrated in‐column electroosmotic pump (EOP) was designed and successfully prepared to facilitate the capillary chromatography with MIP column. A silica‐based EOP was synthesized at the detection end of the MIP monolithic capillary column by so‐gel to provide the hydrodynamic driven force for the capillary chromatography. Because of large surface area and low fluidic resistance of the silica monolith,a strong and steady EOF was generated by silica‐based EOP, indicating that the EOP was quite compatible with MIP capillary column. With the sufficient EOF provided by EOP, the electro‐driven based capillary chromatographic separation of nitrophenol isomers was achieved in 4‐vinylpyridine‐based MIP monolithic capillary, which was originally proved infeasible because of the EOF shortage. No significant influence upon the specific recognition of the MIP was found due to the setting of EOP after the detection window of the column. The influence of experimental parameters on the EOF such as voltage and pH value of running buffer was investigated. The column was also evaluated by capillary liquid chromatographic mode to compare with EOP‐driven capillary chromatography. Higher column efficiency was obtained by EOP‐driven separation with improved peak shape. The results suggested that EOP‐supported technique would be a good way to solve the problem of weak EOF generation in electro‐driven capillary chromatography.  相似文献   

16.
Dynamic computer simulation data are compared for the first time with CE data obtained with a laboratory made system comprising an array of 8 contactless conductivity detectors (C4Ds). The experimental setup featured a 50 μm id linear polyacrylamide (LPA) coated fused‐silica capillary of 70 cm length and a purpose built sequential injection analysis manifold for fluid handling of continuous or discontinuous buffer configurations and sample injection. The LPA coated capillary exhibits a low EOF and the manifold allows the placement of the first detector at about 2.7 cm from the sample inlet. Agreement of simulated electropherograms with experimental data was obtained for the migration and separation of cationic and anionic analyte and system zones in CZE configurations in which EOF and other column properties are constant. For configurations with discontinuous buffer systems, including ITP, experimental data obtained with the array detector revealed that the EOF is not constant. Comparison of simulation and experimental data of ITP systems provided the insight that the EOF can be estimated with an ionic strength dependent model similar to that previously used to describe EOF in fused‐silica capillaries dynamically double coated with Polybrene and poly(vinylsulfonate). For the LPA coated capillaries, the electroosmotic mobility was determined to be 17‐fold smaller compared to the case with the charged double coating. Simulation and array detection provide means for quickly investigating electrophoretic transport and separation properties. Without realistic input parameters, modeling alone is not providing data that match CE results.  相似文献   

17.
Ye F  Xie Z  Wong KY 《Electrophoresis》2006,27(17):3373-3380
A silica-based monolithic column as polar stationary phase is proposed for pressurized CEC (pCEC). The monolithic silica matrix from a sol-gel process was chemically modified by 3-aminopropyltrimethoxysilane to produce a column for hydrophilic interaction applications. The amino groups on the surface of the polar stationary phase generated anodic EOF under acidic conditions and served at the same time as a weak anion-exchanger. The anion solutes such as nucleotides were separated by the mixed mode mechanism, which comprised hydrophilic interaction, weak anion-exchange, and electrophoresis. The influences of buffer concentration and organic modifier content on the separation of nucleotides by pCEC have been investigated. In addition, the monolithic silica columns were also able to separate various polar compounds such as phenols, nucleic acid bases, and nucleosides in the hydrophilic interaction CEC mode.  相似文献   

18.
A novel silica monolithic stationary phase functionalized with 3-(2-aminoethylamino)propyl ligands for pressurized CEC has been presented. The monolithic capillary columns were prepared by a sol-gel process in 75 microm id fused-silica capillaries and followed by a chemical modification. The diamino groups on the surface of the stationary phase are meant to generate the chromatographic surface and a substantial anodic EOF as well as to provide electrostatic interaction sites for charged solutes. The electrochromatographic characterization and column performance were evaluated by a variety of neutral and charged solutes. It was observed that the anodic EOF for the diamine-bonded monolith was greatly affected by the reaction time with 3-(2-aminoethylamino)propyltrimethoxysilane and the PEG amount in the sol-gel reaction mixture in addition to the mobile phase conditions. The monolithic stationary phase exhibited hydrophilic interaction chromatographic behavior toward neutral solutes. Good separations of various solutes including phenols, nucleic acid bases, nucleosides and nucleotides were achieved under different experimental conditions. Fast and efficient separations were obtained with high plate counts reaching more than 130,000 plates/m.  相似文献   

19.
The surface tensions were measured at atmospheric pressure, with use of a ring tensiometer, of a series of alcoholic solutions of closely related ionic liquids: 1-methyl-3-methylimidazolium methylsulfate, [MMIM][CH3SO4] in alcohol (methanol, or ethanol, or 1-butanol at 298.15 K), 1-butyl-3-methylimidazolium methylsulfate, [BMIM][CH3SO4] in alcohol (methanol, or ethanol, or 1-butanol at 298.15 K), 1-butyl-3-methylimidazolium octylsulfate, [BMIM][OcSO4] in alcohol (methanol, or 1-butanol at 298.15 K) and of 1-hexyloxymethyl-3-methylimidazolium tetrafluoroborate, [C6H(13)OCH2MIM][BF4], 1,3-dihexyloxymethylimidazolium tetrafluoroborate, [(C6H13OCH2)2IM][BF4] in alcohol (methanol, or 1-butanol, or 1-hexanol at 308.15 and 318.5 K) and hexyl(2-hydroxyethyl)dimethylammonium bromide, C6Br in 1-octanol at 298.15 K. The set of ammonium ionic liquids of different cations and anions (C2Br, C2BF4, C2PF6, C2N(CN)2, C3Br, C4Br and C6Br) was chosen to show the influence of small amount of the ammonium ionic liquid on the surface tension of water at 298.15 K. The influence of the cation, or anion alkyl chain length on the properties under study (densities and surface tension) was tested.  相似文献   

20.
A novel stationary phase triacontyl-functionalized monolithic silica capillary column was successfully prepared for reversed-phase capillary liquid chromatography. The performance of the monolithic silica capillary column coated with triacontyl chain for the separation of alkylbenzenes, xylene isomers, polycyclic aromatic hydrocarbons, and mixture of α- and β-carotenes was studied, which was compared to that using the monolithic silica capillary column coated with octadecyl chain. The comparison results showed that triacontyl-functionalized monolithic silica capillary column would be a promising media to be used for the separation of isomeric solutes with long chain in reversed-phase capillary liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号