首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LiNi0.8Co0.2O2 and Ca-doped LiNi0.8Co0.2O2 cathode materials have been synthesized via a rheological phase reaction method. X-ray diffraction studies show that the Ca-doped material, and also the discharged electrode, maintains a hexagonal structure even when cycled in the range of 3.0–4.35 V (vs Li+/Li) after 100 cycles. Electrochemical tests show that Ca doping significantly improves the reversible capacity and cyclability. The improvement is attributed to the formation of defects caused by the partial occupancy of Ca2+ ions in lithium lattice sites, which reduce the resistance and thus improve the electrochemical properties.  相似文献   

2.
One-dimensional (1D) submicron-belts of V2O5 have been prepared by a sol–gel route using V2O5, H2O2 and aniline as starting materials. Thermogravimetric and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy were employed to characterize the samples. Electrochemical behaviors as cathode material in rechargeable lithium-ion batteries were investigated by galvanostatic charge–discharge measurement and cyclic voltammeter. The results showed that the synthesized V2O5 appeared to be submicron-belts and orthorhombic structure. The V2O5 submicron-belts exhibited a high initial discharge capacity of 346 mAh/g and stayed 240 mAh/g after 20 cycles at 0.1 C discharge rate in the potential region 1.8–4.0 V.  相似文献   

3.
Ca3Co4O9 powder was prepared by a polyacrylamide gel route in this paper. The effect of the processing on microstructure and thermoelectric properties of Ca3Co4O9 ceramics via spark plasma sintering were investigated. Electrical measurement shows that the Seebeck coefficient and conductivity are 170 μV/K and 128 S/cm, respectively, at 700 °C, yielding a power factor value of 3.70 × 10−4 W m−1 K−2 at 700 °C, which is larger than that of Ca3Co4O9 ceramics via solid-state reaction processing. The polyacrylamide gel processing is a fast, cheap, reproducible and easily scaled up chemical route to improve the thermoelectric properties of Ca3Co4O9 ceramics by preparing the homogeneous and pure Ca3Co4O9 phase.  相似文献   

4.
LiNi0.5Mn1.5O4 powders were prepared through polymer-pyrolysis method. XRD and TEM analysis indicated that the pure spinel structure was formed at around 450 °C due to the very homogeneous intermixing of cations at the atomic scale in the starting precursor in this method, while the well-defined octahedral crystals appeared at a relatively high calcination temperature of 900 °C with a uniform particle size of about 100 nm. When cycled between 3.5 and 4.9 V at a current density of 50 mA/g, the as prepared LiNi0.5Mn1.5O4 delivered an initial discharge capacity of 112.9 mAh/g and demonstrated an excellent cyclability with 97.3% capacity retentive after 50 cycles.  相似文献   

5.
Layered Li-rich transition metal oxides are considered among the most promising cathode materials for high energy density lithium-ion batteries. It was studied how the method and conditions of synthesis of Li-rich oxides Li1.2Mn0.54Ni0.13Co0.13O2 affect their electrochemical properties. Coprecipitation methods and modified Pechini process were used. It was shown that it is necessary to carefully choose the synthesis conditions when using the modified Pechini method because of their significant effect on the morphology of Li-rich oxides. Samples were obtained with high electrochemical characteristics: capacity discharge of 260–270 mAh/g (16 mA/g) and 60–70 mAh/g (988 mA/g) within the voltage range of 2.5–4.8 V.  相似文献   

6.
Three kinds of LiFePO4 materials, mixed with carbon (as LiFePO4/C), doped with Ti (as Li0.99Ti0.01FePO4), and treated both ways (as Li0.99Ti0.01FePO4/C composite), were synthesized via ball milling by solid-state reaction method. The crystal structure and electrochemical behavior of the materials were investigated using X-ray diffraction, SEM, TEM, cyclic voltammetry, and charge/discharge cycle measurements. It was found that the electrochemical behavior of LiFePO4 could be increased by carbon coating and Ti-doping methods. Among the materials, Li0.99Ti0.01FePO4/C composite presents the best electrochemical behavior, with an initial discharge capacity of 154.5 mAh/g at a discharge rate of 0.2 C, and long charge/discharge cycle life. After 120 cycles, its capacity remains at 92% of the initial capacity. The Li0.99Ti0.01FePO4/C composite developed here can be used as the cathode material for lithium ion batteries.  相似文献   

7.
New composite cathode materials xLiMn2O4/(1 ? x) LiCoO2(x = 0.7, 0.6, 0.5 и 0.4) were obtained by mechanical activation. According to scanning electron microscopy data, the process was accompanied by pronounced dispersion and fine mixing of the initial components. In the course of the preparation and electrochemical cycling of the composites, LiMn2O4 and LiCoO2 partially reacted, leading to the replacement of manganese with cobalt in the structure of spinel, which was detected by powder X-ray diffraction (XRD), IR and X-ray photoelectron spectroscopy (XPS), and cyclic chronopotentiometry. The specific discharge capacity of composites was ~100 mAh/g.  相似文献   

8.
Olivine-type LiFePO4 is a very promising polyanion-type cathode material for lithium-ion batteries. In this work, LiFePO4 with high specificity capacity is obtained from a novel precursor NH4FePO4·H2O via microwave processing. The grains grow up in the duration of sintering until they reach the decomposition temperature. The apparent conductivity of the samples rises rapidly with the irradiation time and influences the electrochemical performance of the material greatly at high current density. As a result, the LiFePO4 cathode material obtained with a sintering time of 15 min has good electrochemical performance. Between 2.5 and 4.2 V versus Li, a reversible capacity is as high as 156 mAh g−1 at 0.05 C.  相似文献   

9.
Large-scale Li1+x V3O8 nanobelts were successfully fabricated using filter paper as deposition substrate through a simple surface sol–gel method. The nanobelts were as long as tens of micrometers with widths of 0.4–1.0 μm and thickness of 50–100 nm. The nanobelts were characterized by X-ray diffration (XRD), Fourier infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The formation mechanism of the nanobelts was investigated, showing that the morphology of the nanobelts is mainly determined by the calcination temperature. Electrochemical properties of the Li1+x V3O8 nanobelts were characterized by charge–discharge experiments, and the results demonstrate that the Li1+x V3O8 nanobelts exhibit a high discharge capacity (278 mAh g−1) and excellent cycling stability.  相似文献   

10.
Lithium iron phospho-olivine cathode material with optimized lithium amount for lithium-ion batteries was successfully prepared from low cost Fe2O3 as raw materials by thermal reduction method. The as-obtained material showed a reversible discharge capacity of 153.8 mAh g–1 in the voltage window of 2.0–4.2 V at half-cell level. The pouch-typed cells with prepared Li1.05FePO4 were assembled to investigate electrochemical performance at level of full-cell. The results show that the assembled pouch-typed full-cells present better rate capability and cycle life. The low-cost approach reported here firstly sheds light on application of mass production of olivinestructured LiFePO4 at level of full-cell.  相似文献   

11.
Electrolytic (e) cobalt oxide of a spinel structure, e-Co3O4, is obtained from the sulfate and nitrate (aqueous, water-alcohol) solutions containing Co2+ with the aim of using it in thin-layer anodes of lithium-ion batteries. The physicochemical and structural properties of the synthesized compounds are examined using thermal and x-ray diffraction analyses, absorption IR spectroscopy, and atomic force microscopy. The electrochemical characteristics of e-Co3O4 are determined in breadboards of lithium power sources and in the lithiumion system LiCoO2/e-Co3O4.  相似文献   

12.
以六水合硝酸钴[Co(NO_3)_2·6H_2O]为钴源、六水合硝酸锌[Zn(NO_3)_2·6H_2O]为锌源、2,2′-硫代二乙酸(C4H6O4S)为硫源,采用溶剂热法制备出了片状的Co_9S_8/ZnS/C复合材料。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和N_2吸附/脱附测试等手段对于片状Co_9S_8/ZnS/C复合材料结构和形貌等进行表征,同时对片状Co_9S_8/ZnS/C复合材料进行了电催化产氧性能测试。结果表明:片状Co_9S_8/ZnS/C复合材料的起始过电位为390 mV,塔菲尔斜率为144 mV·dec~(-1),具有高的电催化产氧性能。  相似文献   

13.
Lithium-riched cathode material for lithium-ion batteries, Li1.17Ni0.12Co0.13Mn0.58O2, was synthesized via crystallization from a solution of metal acetates, followed by a thermal treatment of the material obtained as a powder. The phase, elemental, and granulometric compositions of the material were examined, as well as the morphology of the powder particles obtained. The discharge capacity of the material in relation to the charging voltage was found from the results of electrochemical tests, and endurance tests were performed. The discharge capacity upon 85 charge/discharge cycles at voltages in the range 2.8–4.8 and a current of 0.1C was about 180 mA h g–1.  相似文献   

14.
Submicron LiCoO2 was synthesized by a polymer pyrolysis method using LiOH and Co(NO3)2 as the precursor compounds. Experimental results demonstrated that the powders calcined at 800 °C for 12 h appear as well-crystallized, uniform submicron particles with diameter of about 200 nm. As a result, the as-prepared LiCoO2 electrode displayed excellent electrochemical properties, with an initial discharge capacity of 145.5 mAh/g and capacity retention of 86.1% after 50 cycles when cycled at 50 mA/g between 3.5 and 4.25 V. When cycled between 3.5 and 4.5 V, the discharge capacity increased to 177.9 mAh/g with capacity retention of 85.6% after 50 cycles.  相似文献   

15.
The compound, lithium trivanadate (LiV3O8), was synthesized by the polymer precursor method, using the polymer polyvinylpyrrolidone. The electrochemical performance of LiV3O8 was compared with LiV3O8 synthesized by the solid state reaction method. The prepared compounds were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy techniques. The electrochemical performances were studied by cyclic voltammetry and galvanostatic cycling in the voltage range of 2.0 to 4.0 V at room temperature (25 °C). The compound prepared by the polymer precursor method was found to have a good cycling stability. A reversible capacity value of 203 mAh/g (2.18 mol of Li) and 170 mAh/g (1.83 mol of Li) was obtained at the end of the 70th cycle, at a current density of 30 and 120 mA/g, respectively.  相似文献   

16.
Rod-like CaMoO4 nanocrystals were synthesized via a template-based rheological phase reaction route as a novel method. The physical characterization was carried out by thermogravimetric/differential thermal analysis (TG/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and elected-area electron diffraction (SAED). A structure-directed role of hexamethylene tetramine (HMTA) was observed during the formation of CaMoO4 nanocrystals. The electrochemical performance of CaMoO4 as anode for lithium ion batteries has also been investigated by galvanostatic cycling and AC impedance spectroscopy. CaMoO4/Li cell can deliver superior capacity than theoretical value in the initial cycle, and the much improved capacity was attributed to the contribution of oxygen besides the reduction of molybdenum during lithium insertion. Furthermore, a charge capacity of 276 and 438 mAh/g was retained after 50 cycles in the range of 0.01–2.50 V vs Li at a current density of 100 and 200 mA/g, respectively. The particle size and morphological properties were found to play an important role in fast lithium insertion/extraction performance and cycling stability at high rate.  相似文献   

17.
Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) is a promising alternative to LiCoO2, as it is less expensive, more structurally stable, and has better safety characteristics. However, its capacity of 155 mAh g?1 is quite low, and cycling at potentials above 4.5 V leads to rapid capacity deterioration. Here, we report a successful synthesis of lithium-rich layered oxides (LLOs) with a core of LiMO2 (R-3m, M?=?Ni, Co) and a shell of Li2MnO3 (C2/m) (the molar ratio of Ni, Co to Mn is the same as that in NCM 111). The core–shell structure of these LLOs was confirmed by XRD, TEM, and XPS. The Rietveld refinement data showed that these LLOs possess less Li+/Ni2+ cation disorder and stronger M*–O (M*?=?Mn, Co, Ni) bonds than NCM 111. The core–shell material Li1.15Na0.5(Ni1/3Co1/3)core(Mn1/3)shellO2 can be cycled to a high upper cutoff potential of 4.7 V, delivers a high discharge capacity of 218 mAh g?1 at 20 mA g?1, and retains 90 % of its discharge capacity at 100 mA g?1 after 90 cycles; thus, the use of this material in lithium ion batteries could substantially increase their energy density.
Graphical Abstract Average voltage vs. number of cycles for the core–shell and pristine materials at 20 mA g?1 for 10 cycles followed by 90 cycles at 100 mA g?1
  相似文献   

18.
Herein, porous Li3V2(PO4)3/C microspheres made of nanoparticles are obtained by a combination of sol spray-drying and subsequent-sintering process. Beta-cyclodextrin serves as a special chelating agent and carbon source to obtain carbon-coated Li3V2(PO4)3 grains with the size of ca. 30–50?nm. The unique porous structure and continuous carbon skeleton facilitate the fast transport of lithium ion and electron. The Li3V2(PO4)3/C microspheres offer an outstanding electrochemical performance, which present a discharge capacity of 122?mAh?g?1 at 2?C with capacity retention of 96% at the end of 1000 cycles and a high-rate capacity of 113?mAh?g?1 at 20?C in the voltage window of 3.0–4.3?V. Moreover, the Li3V2(PO4)3/C microspheres also give considerable cycling stability and high-rate reversible capacity at a higher end-of-charge voltage of 4.8?V.  相似文献   

19.
采用原位溶剂热生长法设计合成了锌掺杂Co9S8纳米颗粒。各种表征技术和性能测试结果表明:锌掺杂Co9S8纳米颗粒的孔尺寸为18 nm,比表面积为23 m2·g-1;同时微量的锌掺杂显著增强了Co9S8的电催化析氢(HER)活性及电容器性能。在HER性能测试中,当电流密度为10 mA·cm-2时电位为-361 mV,电流密度最高可达38.26 mA·cm-2,且具有优异的循环稳定性。同时在电容器性能测试中具有较高的比电容,当电流密度为1 A·g-1时,质量比电容和面积比电容分别为235.48 F·g-1和812.4 mF·cm-2。  相似文献   

20.
Mg二次电池正极材料Cu2Mo6S8的合成与表征   总被引:1,自引:0,他引:1  
采用CuS.H2O、MoS2、Mo为原料,用熔盐法(KCl为熔盐)合成了谢弗雷尔相的Cu2Mo6S8正极材料,并用XRD,SEM,循环伏安测试,充放电测试对材料的结构和电化学性能进行研究。XRD结果表明本Cu2Mo6S8正极材料属于R3空间群,具有良好的晶型。电化学测试表明,当材料在电压0.2~2 V范围内进行充放电时,其放电比容量在90 mAh.g-1左右,循环稳定性和可逆性均良好。该材料的充放电曲线中在1.2 V和1.9 V分别有还原峰,0.7 V和1.0 V分别有氧化峰,与伏安曲线相对应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号