首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3D-MoS2 can adsorb organic molecules and provide multidimensional electron transport pathways, implying a potential application for environment remediation. Here, we study the degradation of aromatic organics in advanced oxidation processes (AOPs) by a 3D-MoS2 sponge loaded with MoS2 nanospheres and graphene oxide (GO). Exposed Mo4+ active sites on 3D-MoS2 can significantly improve the concentration and stability of Fe2+ in AOPs and keep the Fe3+/Fe2+ in a stable dynamic cycle, thus effectively promoting the activation of H2O2/peroxymonosulfate (PMS). The degradation rate of organic pollutants in the 3D-MoS2 system is about 50 times higher than without cocatalyst. After a 140 L pilot-scale experiment, it still maintains high efficiency and stable AOPs activity. After 16 days of continuous reaction, the 3D-MoS2 achieves a degradation rate of 120 mg L−1 antibiotic wastewater up to 97.87 %. The operating cost of treating a ton of wastewater is only US$ 0.33, suggesting huge industrial applications.  相似文献   

2.
The application of advanced oxidation processes (AOPs) based on sulfate radicals for degrading persistent organic pollutants faces challenges due to the inefficient activation of peroxydisulfate (PDS) oxidant. Herein, a composite CoFe2O4/MoS2-xOy (CFM) catalyst consisting of CoFe2O4 nanoparticles uniformly dispersed on the nanosheets of oxygen-incorporated MoS2 (MoS2-xOy) with flower-like morphology are fabricated through a facile two-step hydrothermal method, which results in the enhanced activation of PDS and a highly efficient degradation of phenolic pollutants. The oxygen-doping in MoS2-xOy leads to unsaturated sulfur and active sites on the surface of MoS2 for accelerating the rate limiting step of FeIII/FeII reduction cycle in PDS-CFM reaction. Aiming at the refractory organic pollutants in actual coking wastewater, CFM co-catalyst is introduced into a hydrogel made up of polyvinyl alcohol (PVA) and coal-tar pitch oxides (PO) to construct a multifunctional CFM@PO/PVA hydrogel. Upon hybrid CFM@PO/PVA, the coupling of the enhanced AOP with solar-driven interfacial vapor generation (SIVG) technology contributes to the degradation efficiency, the removal rate of phenol in solution and the total organic carbon in coking wastewater can reach 98 % and 91 %, respectively. The integration of heterogeneous AOPs with SIVG system provides a feasible strategy for the eco-friendly efficient purification of industrial wastewater.  相似文献   

3.
《中国化学快报》2020,31(10):2803-2808
Although MoS2 has been proved to be a very ideal cocatalyst in advanced oxidation process (AOPs), the activation process of peroxymonosulfate (PMS) is still inseparable from metal ions which inevitably brings the risk of secondary pollution and it is not conducive to large-scale industrial application. In this study, the commercial MoS2, as a durable and efficient catalyst, was used for directly activating PMS to degrade aromatic organic pollutant. The commercial MoS2/PMS catalytic system demonstrated excellent removal efficiency of phenol and the total organic carbon (TOC) residual rate reach to 25%. The degradation rate was significantly reduced if the used MoS2 was directly carried out the next cycle experiment without any post-treatment. Interestingly, the commercial MoS2 after post-treated with H2O2 can exhibit good stability and recyclability for cyclic degradation of phenol. Furthermore, the mechanism for the activation of PMS had been investigated by density functional theory (DFT) calculation. The renewable Mo4+ exposed on the surface of MoS2 was deduced as the primary active site, which realized the direct activation of PMS and avoided secondary pollution. Taking into account the reaction cost and efficient activity, the development of commercial MoS2 catalytic system is expected to be applied in industrial wastewater.  相似文献   

4.
Advanced Oxidation Processes (AOPs) for wastewater treatment are gaining more importance since biological treatment plants are often not sufficient for highly contaminated or toxic wastewaters. In order to find out the most efficient and cheap AOP, investigations were concentrated on methods that can use sunlight. The systems TiO2/UV, Fe2+/H2O2/UV (Photo-Fenton reaction), Fe2+/O2/UV and Fe2+/O3/UV were compared. Since the Photo-Fenton system was the most effective, pilot plant experiments with industrial wastewaters and sunlight experiments were carried out. Finally a rough cost estimate shows that Photo-Fenton treatment with sunlight is far cheaper than other available AOPs, namely ozonization.  相似文献   

5.
《中国化学快报》2023,34(1):107253
This study explored the catalytic mechanism and performance impacted by the materials ratio of Fe3O4-GOx composites in three typical advanced oxidation processes (AOPs) of O3, peroxodisulfate (PDS) and photo-Fenton processes for tetracycline hydrochloride (TCH) degradation. The ratio of GO in the Fe3O4-GOx composites exhibited different trends of degradation capacity in each AOPs based on different mechanisms. Fe3O4-rGO20wt% exhibited the optimum catalytic performance which enhanced the ozone decomposition efficiency from 33.48% (ozone alone) to 51.83% with the major reactive oxygen species (ROS) of O2??. In PDS and photo-Fenton processes, Fe3O4-rGO5wt% had the highest catalytic performance in PDS and H2O2 decomposition for SO4??, and ?OH generation, respectively. Compared with using PDS alone, PDS decomposition rate and TCH degradation rate could be increased by 5.97 and 1.73 times under Fe3O4-rGO5wt% catalysis. In the photo-Fenton system, Fe3O4-rGO5wt% with the best catalyst performance in H2O2 decomposition, and TCH degradation rate increased by 2.02 times compared with blank group. Meantime, the catalytic mechanisms in those systems of that the ROS produced by conversion between Fe2+/Fe3+ were also analyzed.  相似文献   

6.
Hexaflumuron, one of the benzoylphenylurea insect growth regulators, can be leached into surface water and thus having a potential impact on aquatic organisms. In this study, the photodegradation processes of hexaflumuron under high‐pressure mercury lamp irradiation were assessed. The photodegradation kinetics were studied, as were the effects of pH, different light sources, organic solvents and environmental substances, including nitrate ions (NO3?), nitrite ions (NO2?), ferrous ions (Fe2+), ferric ions (Fe3+), humic acid, sodium dodecyl sulfate (SDS) and hydrogen peroxide (H2O2). Three photodegradation products in methanol were identified by gas chromatography‐mass spectrometry (GC‐MS). In general, the degradation of hexaflumuron followed first‐order kinetics. In the four media studied, the photodegradation rate order was n‐hexane > methanol > ultrapure water > acetone. Faster degradation was observed under high‐pressure mercury lamp irradiation than under xenon lamp irradiation. The pH had a considerable effect, with the most rapid degradation occurring at pH 5.0. The photodegradation rate of hexaflumuron was promoted in the presence of NO3?, NO2?, Fe2+, humic acid, SDS and H2O2, but inhibited by Fe3+. Moreover, the presumed photodegradation pathway was proposed to be the cleavage of the urea linkage.  相似文献   

7.
To date, the chemical conversion of organic pollutants into value-added chemical feedstocks rather than CO2 remains a major challenge. Herein, we successfully developed a coupled piezocatalytic and advanced oxidation processes (AOPs) system for achieving the conversion of various organic pollutants to CO. The CO product stems from the specific process in which organics are first oxidized to carbonate through peroxymonosulfate (PMS)-based AOPs, and then the as-obtained carbonate is converted into CO by piezoelectric reduction under ultrasonic (US) vibration by using a Co3S4/MoS2 catalyst. Experiments and DFT calculations show that the introduction of Co3S4 not only effectively promotes the transfer and utilization of piezoelectric electrons but also realizes highly selective conversion from carbonate to CO. The Co3S4/MoS2/PMS system has achieved selective generation of CO in actual complex wastewater treatment for the first time, indicating its potential practical applicability.  相似文献   

8.
Active pharmaceutical intermediates (API) in waste waters have adverse effects on aquatic life and environment. The API have high COD value and low BOD3 and hence difficult to treat biologically. In this study, advanced oxidation processes (AOPs) utilizing the H2O2/Fe+2, Fenton reactions were investigated in lab-scale experiments for the degradation of Atenolol containing waste water streams. The experimental results showed that the Fenton process using H2O2/Fe+2 was the most effective treatment process. With Fenton processes, COD reduction of wastewater can be achieved successfully. It is suggested that Fenton processes are viable techniques for the degradation of Atenolol from the waste water stream with relatively low toxic by-products in the effluent which can be easily biodegraded in the activated sludge process. Hence, the Fenton process with H2O2/Fe+2 is considered a suitable pretreatment method to degrade the active pharmaceutical molecules and to improve the biodegradability of waste water.  相似文献   

9.
Effective detection of organic/inorganic pollutants, such as antibiotics, nitro‐compounds, excessive Fe3+ and MnO4?, is crucial for human health and environmental protection. Here, a new terbium(III)–organic framework, namely [Tb(TATAB)(H2O)]?2H2O ( Tb‐MOF , H3TATAB=4,4′,4′′‐s‐triazine‐1,3,5‐triyltri‐m‐aminobenzoic acid), was assembled and characterized. The Tb‐MOF exhibits a water‐stable 3D bnn framework. Due to the existence of competitive absorption, Tb‐MOF has a high selectivity for detecting Fe3+, MnO4?, 4‐nirophenol and nitroimidazole (ronidazole, metronidazole, dimetridazole, ornidazole) in aqueous through luminescent quenching. The results suggest that Tb‐MOF is a simple and reliable reagent with multiple sensor responses in practical applications. To the best of our knowledge, this work represents the first TbIII‐based MOF as an efficient fluorescent sensor for detecting metal ions, inorganic anions, nitro‐compounds, and antibiotics simultaneously.  相似文献   

10.
The water‐stable 3D lanthanide‐organic framework (Ln‐MOF) {[Eu(bci)(H2O)] · 2H2O}n ( 1 ) [H2bci = bis(2‐carboxyethyl)isocyanurate] was synthesized under hydrothermal conditions. Compound 1 ‐ Eu exhibits a 3D open‐framework connected by Eu–(μ‐O)2–Eu chains and bci ligands. Meanwhile, 1 ‐ Eu exhibits highly efficient luminescent sensing for environmentally relevant Fe3+ and SCN ions through luminescence quenching. These results indicated that it could be utilized as a multi‐responsive luminescence sensor.  相似文献   

11.
Water pollution derived from organic pollutants is one of the global environmental problems. The Fenton reaction using Fe2+ as a homogeneous catalyst has been known as one of clean methods for oxidative degradation of organic pollutants. Here, a layered double hydroxide (Fe2+Al3+-LDH) containing Fe2+ and Al3+ in the structure was used to develop a “heterogeneous” Fenton catalyst capable of mineralizing organic pollutants. We found that sulfate ion (SO42−) immobilized on the Fe2+Al3+-LDH significantly facilitated oxidative degradation (mineralization) of phenol as a model compound of water pollutants to carbon dioxide (CO2) in a heterogeneous Fenton process. The phenol conversion and mineralization efficiency to CO2 reached >99% and ca. 50%, respectively, even with a reaction time of only 60 min.  相似文献   

12.
A novel graphene‐like MoS2/C3N4 (GL‐MoS2/C3N4) composite photocatalyst has been synthesized by a facile ethylene glycol (EG)‐assisted solvothermal method. The structure and morphology of this GL‐MoS2/C3N4 photocatalyst have been investigated by a wide range of characterization methods. The results showed that GL‐MoS2 was uniformly distributed on the surface of GL‐C3N4 forming a heterostructure. The obtained composite exhibited strong absorbing ability in the ultraviolet (UV) and visible regions. When irradiated with visible light, the composite photocatalyst showed high activity superior to those of the respective individual components GL‐MoS2 and GL‐C3N4 in the degradation of methyl orange. The enhanced photocatalytic activity of the composite may be attributed to the efficient separation of electron–hole pairs as a result of the matching band potentials between GL‐MoS2 and GL‐C3N4. Furthermore, a photocatalytic mechanism for the composite material has been proposed, and the photocatalytic reaction kinetics has been measured. Moreover, GL‐MoS2/C3N4 could serve as a novel sensor for trace amounts of Cu2+ since it exhibited good selectivity for Cu2+ detection in water.  相似文献   

13.
采用水热法成功制备了MoS2/WO3复合半导体光催化剂,分别通过SEM、TEM、EDS、XRD、Raman和DRS对催化剂的形貌,组成及结构进行表征,并用BET模型计算比表面积。对比发现球状MoS2/WO3对罗丹明B(RhB)的光降解效率明显高于纯WO3、片状MoS2/WO3复合半导体。针对球状MoS2/WO3复合半导体,分别研究了MoS2不同负载量(0.5%,1%,2%,5%,10%)对RhB光催化降解性能的影响,结果表明MoS2含量为2%时催化效果最佳。同时,研究了溶液的pH值(pH=1,3,6,7,11)对光催化降解反应活性的影响,结果显示pH=6时降解率最高。当催化剂量增加到1 g·L-1时,30min后RhB降解率达到96.6%。球状MoS2/WO3的瞬态光电流为0.050 6 mA·cm-2,比纯WO3提高了2.4倍。经过5次循环实验,球状MoS2/WO3复合半导体催化剂仍能保持90%的高降解率。  相似文献   

14.
Fe3+ Ions have been immobilized into very thin Nafion films cast onto a glass‐fiber mat immersed in an alcoholic solution of Nafion oligomers. This immobilized Fenton catalyst was used to abate/mineralize the azo dye Orange II, taken as a model organic compound. The abatement of Orange II on the Fe3+/Nafion/glass fibers was observed to proceed within the same time period as when Nafion alone was used to immobilize the Fe3+ ions during the photo‐Fenton reaction. The amount of Nafion in the Nafion Fe3+/Nafion/glass fibers was ca. 15 times less per unit surface area compared to Fe3+‐exchanged on conventional Nafion membranes used to immobilize Fe3+ ions. Orange II solutions under visible‐light irradiation in the presence of H2O2 were mineralized up to pH 8 with a kinetics comparable to that found during the degradation runs at pH 3. Repetitive mineralization cycles mediated by the Fe3+/Nafion/glass fibers under visible light did not show any decrease in the activity of the immobilized catalysts. A reaction mechanism consistent with the experimental data is suggested. The morphology of the Fe3+/Nafion/glass fibers was characterized by scanning electron microscopy (SEM) showing thin Nafion films cast deposited on the glass fibers. Transmission‐electron‐microscopy (TEM) micrographs reveal Fe3+‐oxy‐hydroxide particles of 3 – 6 nm before and after repetitive Orange II photodegradation. X‐Ray photoelectron spectroscopy (XPS) provided the evidence for the existence of Fe clusters on the topmost layer of the catalyst mainly as FeIII. The improvements brought by the glass fibers are a) the use of low quantities of expensive Nafion supported on glass mats to achieve dye degradation rates comparable to Nafion alone and b) Fenton‐mediated degradation of azo dyes at pH 8 without the costly initial acidification usually needed for this type of treatment.  相似文献   

15.
采用水热法成功制备了MoS_2/WO3复合半导体光催化剂,分别通过SEM、TEM、EDS、XRD、Raman和DRS对催化剂的形貌,组成及结构进行表征,并用BET模型计算比表面积。对比发现球状MoS_2/WO3对罗丹明B(Rh B)的光降解效率明显高于纯WO3、片状MoS_2/WO3复合半导体。针对球状MoS_2/WO3复合半导体,分别研究了MoS_2不同负载量(0.5%,1%,2%,5%,10%)对Rh B光催化降解性能的影响,结果表明MoS_2含量为2%时催化效果最佳。同时,研究了溶液的p H值(p H=1,3,6,7,11)对光催化降解反应活性的影响,结果显示p H=6时降解率最高。当催化剂量增加到1 g·L-1时,30 min后Rh B降解率达到96.6%。球状MoS_2/WO3的瞬态光电流为0.050 6 m A·cm-2,比纯WO3提高了2.4倍。经过5次循环实验,球状MoS_2/WO3复合半导体催化剂仍能保持90%的高降解率。  相似文献   

16.
A novel metal–organic framework (MOF) was fabricated by spontaneous K+‐induced supramolecular self‐assembly with the embedded tripodal ligand units. When the 3D ligand was loaded onto Fe3O4@mSiO2 core‐shell nanoparticles, it could effectively separate K+ ions from a mixture of Na+, K+, Mg2+, and Ca2+ ions through nanoparticle‐assisted MOF crystallization into a Fe3O4@mSiO2@MOF hybrid material. Excess potassium ions could be extracted because of the specific cation–π interaction between K+ and the aromatic cavity of the MOF, leading to enhanced separation efficiency and suggesting a new application for MOFs.  相似文献   

17.
The hydrothermal reaction of Zn2+ ions with a mixture of two ligands, Hcptpy and H3btc (Hcptpy=4‐(4‐carboxyphenyl)‐2,2′:4′,4′′‐terpyridine; H3btc=1,3,5‐benzenetricarboxylic acid), led to the formation of a 3D metal–organic framework (MOF) with 1D channels, [Zn2(cptpy)(btc)(H2O)]n ( 1 ), which was structurally characterized by using single‐crystal X‐ray diffraction (SXRD). In MOF 1 , two independent Zn2+ ions were interconnected by btc3? ligands to form a 1D chain, whilst adjacent Zn2+ ions were alternately bridged by cptpy? ligands to generate a 2D sheet, which was further linked by 1D chains to form a 3D framework with a new (3,3,4,4)‐connected topology. Furthermore, compound 1 also exhibited excellent stability towards air and water and, more importantly, luminescence experiments indicated that it could serve as a probe for the sensitive detection of paraquat (PAQ) and Fe3+ ions in aqueous solution.  相似文献   

18.
In the present work, a facile and environmental method was developed to fabricate the novel functionalized MoS2 hybrid. Firstly, MoS2 nanosheets were coated with polydopamine (PDA) through the self‐polymerization of dopamine (MoS2‐PDA) in a buffer solution. Then the decoration of Ni(OH)2 on the MoS2‐PDA was synthesized because of the strong affinity of Ni2+ with hydroxyl groups in PDA. Finally, the as‐synthesized MoS2‐PDA@Ni(OH)2 was introduced into poly(lactic acid) (PLA) matrix to explore flame retardancy, thermal stability, and crystalline property of the composites. As confirmed by X‐ray diffraction (XRD), Fourier‐transform infrared spectrometer (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA), the MoS2 nanosheets were dually modified with PDA and Ni(OH)2 without destroying the original structures. The thermal degradation of PLA with MoS2‐PDA@Ni(OH)2 generated a notably higher yield of char. Moreover, the crystallization rate of composites is higher than neat PLA. The cone calorimeter test revealed that the introduction of 3% MoS2‐PDA@Ni(OH)2 resulted in lower Peak Heat Release Rate (PHRR) (decreased by 21.7%). Thus, the research provided an innovative functionalization method for manufacturing PLA composites with high performances.  相似文献   

19.
This paper described a simple novel technique to prepare magnetic nano‐composite particles coated with highly crosslinked poly(lauryl methacrylate) (PLMA), a hydrophobic polymer because of its long chain alkyl group for application in waste water purification. Nano‐sized magnetite (Fe3O4) particles prepared by coprecipitation of Fe2+ and Fe3+ from their alkali aqueous solution were encapsulated with SiO2 following treatment with tetraethylorthosilicate (TEOS). Finally precipitation copolymerization of LMA and divinyl benzene (DVB) in the presence of Fe3O4/SiO2 particles was carried out within stable isolated droplets containing hexadecane–toluene mixture (4:1 mixture HD‐T). The produced PLMA‐coated magnetic composite particles named as Fe3O4/SiO2/P(LMA‐DVB) were characterized by Fourier Transform IR (FTIR), transmission electron microscopy (TEM), thermogravimetry (TG) and X‐ray diffractometer (XRD) analyses. The performance of the composite particles was evaluated for the removal of organic pollutants from water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
《Analytical letters》2012,45(15):2949-2958
Abstract

The effect of metal ions on TiO2 mediated photocatalytic oxidation for the determination of dissolved organic nitrogen compounds is investigated. Ethylenediaminetetraaceticacid was chosen as a model molecule for DON compounds. At pH 2, 5, 7, and 10 aqueous EDTA solutions were irradiated at 254 nm in the presence of Fe2+, Cu2+, Zn2+, Ni2+ or Co2+ ions. The sum of produced nitrate, nitrite, and ammonium ion concentrations gave the total oxidation recovery. At low pH, the photocatalytic oxidation recoveries of Fe‐EDTA, Ni‐EDTA, and Co‐EDTA were significantly lower than the photocatalytic degradation of EDTA. The presence of free Fe2+, Ni2+, and Co2+ ions decreased the photocatalytic oxidation recovery. The [NH4 +]/[NO3 ?] ratio was higher for Cu‐EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号