首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel amperometric glucose biosensor based on layer‐by‐layer (LbL) electrostatic adsorption of glucose oxidase (GOx) and dendrimer‐encapsulated Pt nanoparticles (Pt‐DENs) on multiwalled carbon nanotubes (CNTs) was described. Anionic GOx was immobilized on the negatively charged CNTs surface by alternatively assembling a cationic Pt‐DENs layer and an anionic GOx layer. Transmission electron microscopy images and ζ‐potentials proved the formation of layer‐by‐layer nanostructures on carboxyl‐functionalized CNTs. LbL technique provided a favorable microenvironment to keep the bioactivity of GOx and prevent enzyme molecule leakage. The excellent electrocatalytic activity of CNTs and Pt‐DENs toward H2O2 and special three‐dimensional structure of the enzyme electrode resulted in good characteristics such as a low detection limit of 2.5 μM, a wide linear range of 5 μM–0.65 mM, a short response time (within 5 s), and high sensitivity (30.64 μA mM?1 cm?2) and stability (80% remains after 30 days).  相似文献   

2.
《Electroanalysis》2017,29(12):2719-2726
A novel glucose biosensor was constructed through the immobilization of glucose oxidase (GOx) on gold nanoparticles (Au NPs) deposited, and chemically reduced graphene oxide (rGO) nanocomposite. In the synthesis, tannic acid (TA) was used for the reduction of both graphene oxide, and Au3+ to rGO, and Au NPs, respectively. Also, by harnessing the π‐π interaction between graphene oxide and TA, and protein‐TA interaction, a novel nanocomposite for the fabrication of a third generation biosensor was successfully constructed. Upon the oxidation of TA to quinone, which is easily reducible at the negative potential range, enhanced electron transfer was obtained. The cyclic voltammetry (CV) results demonstrated a pair of well‐defined and quasi‐reversible redox peaks of active site molecule of GOx. The biosensor exhibited a linear response to glucose concentrations varying from 2 to 10 mM with a sensitivity of 18.73 mA mM−1 cm−2. The fabricated biosensor was used for the determination of glucose in beverages.  相似文献   

3.
A type of novel electroanalytical sensing nanobiocomposite material was prepared by electropolymerization of pyrrole containing poly(amidoamine) dendrimers‐encapsulated platinum nanoparticles (Pt‐PAMAM), and glucose oxidase (GOx). The Pt nanoparticles encapsulated in PAMAM are nearly monodisperse with an average diameter of 3 nm, and they provide electrical conductivity. Polypyrrole acts as a polymer backbone to give stable and homogeneous cast thin films, and it also defines the electrical conductivity. Both Polypyrrole and PAMAM can provide a favorable microenvironment to keep the bioactivity of enzymes such as glucose oxidase. The homogeneity of GOx/Pt‐PAMAM‐PPy nanobiocomposite films was characterized by atomic force microscopy (AFM). Amperometric biosensors fabricated with these materials were characterized electrochemically using cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and amperometric measurements in the presence of hydrogen peroxide or glucose. All those show the resultant biosensor sensitivity was strongly enhanced within the nanobiocomposite film. The optimized glucose biosensor displayed a sensitivity of 164 μA mM?1 cm?1, a linear range of 0.2 to 600 μM, a detection limit of 10 nM, and a response time of <3 s.  相似文献   

4.
《Electroanalysis》2017,29(11):2507-2515
In the present study, a novel enzymatic glucose biosensor using glucose oxidase (GOx) immobilized into (3‐aminopropyl) triethoxysilane (APTES) functionalized reduced graphene oxide (rGO‐APTES) and hydrogen peroxide sensor based on rGO‐APTES modified glassy carbon (GC) electrode were fabricated. Nafion (Nf) was used as a protective membrane. For the characterization of the composites, Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffractometer (XRD), and transmission electron microscopy (TEM) were used. The electrochemical properties of the modified electrodes were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The resulting Nf/rGO‐APTES/GOx/GC and Nf/rGO‐APTES/GC composites showed good electrocatalytical activity toward glucose and H2O2, respectively. The Nf/rGO‐APTES/GC electrode exhibited a linear range of H2O2 concentration from 0.05 to 15.25 mM with a detection limit (LOD) of 0.017 mM and sensitivity of 124.87 μA mM−1 cm−2. The Nf/rGO‐APTES/GOx/GC electrode showed a linear range of glucose from 0.02 to 4.340 mM with a LOD of 9 μM and sensitivity of 75.26 μA mM−1 cm−2. Also, the sensor and biosensor had notable selectivity, repeatability, reproducibility, and storage stability.  相似文献   

5.
Glucose concentration monitoring is important for the prevention, diagnosis and treatment of diabetes. In this work, a composite material of AgNPs/MOF‐74(Ni) was prepared for electrochemical determination of glucose. AgNPs/MOF‐74(Ni) was characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X‐ray photoelectron spectroscopy (XPS). The electrochemical properties of the glassy carbon electrodes modified with the AgNPs/MOF‐74(Ni) composites were characterized by cyclic voltammetry (CV) and current‐time curve (I‐t curve) with three electrode system. The determination of glucose with the electrode modified by AgNPs/MOF‐74(Ni) has a linear range of 0.01~4 mM with the correlation coefficient (R2) of 0.994. The detection limit is 4.7 μM (S/N=3) and the sensitivity is 1.29 mA ? mM?1 ? cm?2. In addition, this sensing system possesses reasonable reproducibility and stability. The good performance of electrochemical determination for glucose is attributed to the concerted effect of silver nanoparticles and MOF‐74(Ni) on the promotion of glucose oxidation  相似文献   

6.
In recent years, tremendous research efforts have been made towards developing metal–organic framework (MOF)‐based composites for photocatalytic applications. In this work, bipyramid‐like MIL‐125(Ti) frustum enwrapped with reduced graphene oxide (rGO) and dispersed silver nanoparticles (Ag NPs) was fabricated using an efficient one‐pot self‐assembly and photoreduction strategy. The as‐obtained materials were characterized using field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, nitrogen adsorption–desorption isotherms, and X‐ray photoelectron, ultraviolet–visible diffuse reflectance and photoluminescence spectroscopies. It is found that the as‐prepared Ag/rGO/MIL‐125(Ti) ternary hybrids have large surface area, microporous structure, enhanced visible light absorption and prolonged lifetime of charge carriers. Compared with pure MIL‐125(Ti) and its binary counterparts, the ternary composite exhibits more efficient photocatalytic performance for Rhodamine B (RhB) degradation from water under visible light irradiation. The photodegradation rate of RhB on Ag/rGO/MIL‐125(Ti) is 0.0644 min?1, which is 1.62 times higher than that of the pure MIL‐125(Ti). The improved photocatalytic performance is ascribed to the indirect dye photosensitization, the Ag NP localized surface plasmon resonance, the Ti3+–Ti4+ intervalence electron transfer and the synergistic effect among MIL‐125(Ti), Ag NPs and rGO. Ag NPs serve as an efficient ‘electron reservoir’ and rGO as an electron transporter and collector. Therefore, this work provides a new pathway into the design of MOF‐based composites for application in environmental and energy fields. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A simple glucose biosensor has been developed based on direct electrochemistry of glucose oxidase (GOx) immobilized on the reduced graphene oxide (RGO) and β‐cyclodextrin (CD) composite. A well‐defined redox couple of GOx appears with a formal potential of ~?0.459 V at RGO/CD composite. A heterogeneous electron transfer rate constant (Ks) has been calculated for GOx at RGO/CD as 3.8 s?1. The fabricated biosensor displays a wide response to glucose in the linear concentrations range from 50 µM to 3.0 mM. The sensitivity and limit of detection of the biosensor is estimated as 59.74 µA mM?1 cm?2 and 12 µM, respectively.  相似文献   

8.
In this study, a new method for modification of vertically aligned carbon nanotube arrays (VACNTs) for selective detection of glucose was developed. VACNTs were grown by chemical vapor deposition method on a silicon substrate deposited with alumina as a buffer layer and iron as a catalyst using radio frequency (RF) sputtering and electron beam evaporation, respectively. The surface of the electrode was modified with electrodeposition of polyaniline (PANI) followed by covalent attachment of glucose oxidase (GOx). The electrode was characterized using field emission scanning electron microscopy (FESEM), micro‐Raman spectroscopy, and attenuated total reflectance Fourier transform infrared spectrometer (ATR‐FTIR) techniques. Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of the electrode. The fabricated electrode was successfully employed as a point‐of‐care (POC) biosensor for the detection of glucose in human blood plasma. The detection limit was 1.1 μM, and the sensitivity was 620 μA mM?1 cm?2 at the linear range of 2–426 μM.  相似文献   

9.
A novel amperometric glucose biosensor was fabricated by in situ incorporating glucose oxidase (GOD) within the sol‐gel silica film on a Prussian blue (PB) modified electrode. The method is simple and controllable, which combined the merits of in situ immobilizing biomolecules in sol‐gel silica film by electrochemical method and the synergic catalysis effects of PB and GOD molecules. Scanning electron microscopy (SEM) showed that the GOD/sol‐gel silica film was homogeneous with a large number of three‐dimensional nanopores, which not only enhanced mass transport, but also maintained the active configuration of the enzyme molecule and prevented the leakage of enzyme, therefore improved the stability and sensitivity of the biosensor. The fabricated biosensor showed fast response time (10 s), high sensitivity (26.6 mA cm?2 M?1), long‐term stability, good suppression of interference, and linear range of 0.01 mM–5.8 mM with a low detection limit of 0.94 μM for the detection of glucose. In addition, the biosensor was successfully applied to determine glucose in human serum samples.  相似文献   

10.
Prussian blue modified carbon ionic liquid electrodes (PB‐CILEs) were fabricated using chemical and electrochemical procedures. Chemically fabricated PB‐CILE exhibited an excellent sensitivity (0.0866 μA μM?1), low detection limit (0.01 μM) and two linear ranges (0.01–1 and 1–600 μM) toward hydrogen peroxide. Then, glucose oxidase (GOx) was immobilized on the surface of PB‐CILE to fabricate glucose biosensor using three different procedures involving cross linking with glutaraldehyde (GLU) and bovine serum albumin (BSA), entrapment into the Nafion matrix and covering with a sol‐gel layer. Glucose biosensor fabricated using cross linking procedure showed the best sensitivity (0.0019 μA μM?1) and operational stability for glucose.  相似文献   

11.
A simple procedure was developed to prepare a glassy carbon electrode modified with multi walled carbon nanotubes (MWCNTs) and Celestin blue. Cyclic voltammograms of the modified electrode show stable and a well defined redox couple with surface confined characteristic at wide pH range (2–12). The formal potential of redox couple (E′) shifts linearly toward the negative direction with increasing solution pH. The surface coverage of Celestine blue immobilized on CNTs glassy carbon electrode was approximately 1.95×10?10 mol cm?2. The charge transfer coefficient (α) and heterogeneous electron transfer rate constants (ks) for GC/MWCNTs/Celestine blue were 0.43 and 1.26 s?1, respectively. The modified electrode show strong catalytic effect for reduction of hydrogen peroxide and oxygen at reduced overpotential. The glucose biosensor was fabricated by covering a thin film of sol‐gel composite containing glucose oxides (GOx) on the surface of Celestine blue /MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 0.3 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. The accuracy of the biosensor for glucose detection was evaluated by detection of glucose in a serum sample, using standard addition protocol. In addition biosensor can reach 90% of steady currents in about 3.0 sec and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) was eliminated. Furthermore, the apparent Michaelis–Menten constant 2.4 mM, of GOx on the nano composite exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility of redox couple, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this procedure for modification of glucose biosensor.  相似文献   

12.
Nanohybrids of chemically modified graphene (CMG) and ionic liquid (IL) were prepared by sonication to modify the electrode. The modified CMG‐IL electrodes showed a higher current and smaller peak‐to‐peak potential separation than a bare electrode due to the promoted electron transfer rate. Furthermore, the glucose oxidase (GOx) immobilized on the modified electrode displayed direct electron transfer rate and symmetrical redox potentials with a linear relationship at different scan rates. The fabricated GOx/CMG‐IL electrodes were developed selective glucose biosensor with respect to a sensitivity of 0.64 μA mM?1, detection limit of 0.376 mM, and response time of <5 s.  相似文献   

13.
《Electroanalysis》2017,29(10):2300-2306
High‐performance biosensors were fabricated by efficiently transferring enzyme onto Pt electrode surfaces using a polydimethylsiloxane (PDMS) stamp. Polypyrrole and Nafion were coated first on the electrode surface to act as permselective films for exclusion of both anionic and cationic electrooxidizable interfering compounds. A chitosan film then was electrochemically deposited to serve as an adhesive layer for enzyme immobilization. Glucose oxidase (GOx) was selected as a model enzyme for construction of a glucose biosensor, and a mixture of GOx and bovine serum albumin was stamped onto the chitosan‐coated surface and subsequently crosslinked using glutaraldehyde vapor. For the optimized fabrication process, the biosensor exhibited excellent performance characteristics including a linear range up to 2 mM with sensitivity of 29.4±1.3 μA mM−1 cm−2 and detection limit of 4.3±1.7 μM (S/N=3) as well as a rapid response time of ∼2 s. In comparison to those previously described, this glucose biosensor exhibits an excellent combination of high sensitivity, low detection limit, rapid response time, and good selectivity. Thus, these results support the use of PDMS stamping as an effective enzyme deposition method for electroenzymatic biosensor fabrication, which may prove especially useful for the deposition of enzyme at selected sites on microelectrode array microprobes of the kind used for neuroscience research in vivo .  相似文献   

14.
利用纳米金(Au NPs)与还原氧化石墨烯(rGO)复合纳米材料制备了葡萄糖氧化酶生物传感器并用于饮料中葡萄糖含量的检测。将壳聚糖作为还原剂及稳定剂,通过一步法合成了Au NPs-rGO复合材料,并通过物理吸附固定葡萄糖氧化酶(GOx)来制作GOx生物传感器。该传感器在磷酸盐缓冲溶液(0.1 mol/L,p H6.0)中,-0.45 V(vs.Ag/Ag Cl)电位下电流法检测葡萄糖含量,线性检测范围为0.01~0.88 mmol/L,灵敏度为22.54μA·mmol-1·L·cm-2,检出限为1.01μmol/L,且表观米氏常数为0.497 mmol/L。该传感器用于多种饮料中葡萄糖含量的直接检测,结果满意。  相似文献   

15.
A sensitive enzymed‐based biosensor for glucose has been obtained by introducing dendrimer encapsulated Pt nanoparticles via a layer‐by‐layer assembling method. The free amine groups located on each poly(amidoamine) dendrimer molecule were exploited to covalently attach enzyme to the dendrimer chains using carbodiimide coupling. The resultant enzyme electrodes are shown to have excellent sensitivity (as high as 30.33 μA mM?1 cm?2) and a limit of detection (about 0.1 μmol L?1), depending on metal nanoparticles within dendrimers and the biocompatibility of dendrimers, the linear response range to glucose (from 5 μM to 1.0 mM), a fast response time (within 5 s), and good reproducibility (<8% relative standard deviation between electrodes at low substrate concentration). The sensitivities, and stabilities determined experimentally have demonstrated the potential of dendrimer encapsulated Pt nanoparticles as a novel candidate for enzymatic glucose biosensors.  相似文献   

16.
《Electroanalysis》2017,29(6):1518-1523
A sensitive and selective amperometric H2O2 biosensor was obtained by utilizing the electrodeposition of Pt flowers on iron oxide‐reduced graphene oxide (Fe3O4/rGO) nanocomposite modified glassy carbon electrode (GCE). The morphology of Fe3O4/rGO and Pt/Fe3O4/rGO was characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. The step‐wise modification and the electrochemical characteristics of the resulting biosensor were characterized by cyclic voltammetry (CV) and chronoamperometry methods. Thanks to the fast electron transfer at the Pt/Fe3O4/rGO electrode interface, the developed biosensor exhibits a fast and linear amperometric response upon H2O2. The linear range of Pt/Fe3O4/rGO is 0.1∼2.4 mM (R2=0.998), with a sensitivity of 6.875 μA/mM and a detection limit of 1.58 μM (S/N=3). In addition, the prepared biosensor also provides good anti‐interferent ability and long‐term stability due to the favorable biocompatibility of the electrode interface. The proposed sensor will become a reliable and effective tool for monitoring and sensing the H2O2 in complicate environment.  相似文献   

17.
An electrochemical biosensor was developed using Pt‐nanoparticles (Pt‐NPs) dispersed graphene based on a boron‐doped diamond thin film electrode. To compare its performances with those of other biosensors, glucose was used as a target analyte. This biosensor exhibited a wide linear range, a low detection limit and a higher sensitivity compared to other amperometric biosensors using graphene‐based electrodes. In addition, the biosensor promotes a direct electron transfer between the redox enzymes and the electrode surface and detects low concentration analytes. The excellent performance of the biosensor is attributed to the synergistic effect of the Pt‐NPs, graphene sheet and the BDD thin film. Therefore, it can be a promising application for electrochemical detection of analytes.  相似文献   

18.
A novel glucose biosensor was developed based on the immobilization of glucose oxidase (GOx) on reduced graphene oxide incorporated with electrochemically deposited platinum and palladium nanoparticles (PtPdNPs). Reduced graphene oxide (RGO) was more hybridized by chemical and heat treatment. Bimetallic nanoparticles were deposited electrochemically on the RGO surface for potential application of the Pd? Pt alloy in biosensor preparation. The as‐prepared hybrid electrode exhibited high electrocatalytic activities toward H2O2, with a wide linear response range from 0.5 to 8 mM (R2=0.997) and high sensitivity of 814×10?6 A/mMcm2. Furthermore, glucose oxidase with active material was integrated by a simple casting method on the RGO/PdPtNPs surface. The as‐prepared biosensor showed good amperometric response to glucose in the linear range from 2 mM to 12 mM, with a sensitivity of 24×10?6 A/mMcm2, a low detection limit of 0.001 mM, and a short response time (5 s). Moreover, the effect of interference materials, reproducibility and the stability of the sensor were also investigated.  相似文献   

19.
A new glucose biosensor, based on the modification of highly ordered Au nanowire arrays (ANs) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. Morphologies of ANs and ANs/PtNPs were observed by scanning electron microscope. The electrochemical properties of ANs, ANs/GOx, ANs/PtNPs, and ANs/PtNPs/GOx electrodes were compared by cyclic voltammetry. Results obtained from comparison of the cyclic voltammograms show that PtNPs modification enhances electrochemical catalytic activity of ANs to H2O2. Hence, ANs/PtNPs/GOx biosensor exhibits much better sensing to glucose than ANs/GOx. Optimum deposition time of ANs/PtNPs/GOx biosensor for both amperometric and potentiometric detection of glucose was achieved to be 150 s at deposition current of 1?×?10?6 A. A sensitivity of 0.365 μA/mM with a linear range from 0.1 to 7 mM was achieved for amperometric detection; while for potentiometric detection the sensitivity is 33.4 mV/decade with a linear range from 0.1 to 7 mM.  相似文献   

20.
Boron-doped diamond electrodes covered with a nanostructured Pt nanoparticle-polyaniline composite have been fabricated and employed as sensitive amperometric sensors with low detection limit. A highly conductive boron-doped diamond thin film (BDD) was prepared by chemical vapor deposition, and its morphology was characterized by scanning electron microscopy and transmission electron microscopy. The nanostructured composite layer was grown on the BDD electrode by electrochemical deposition of polyaniline and Pt nanoparticles. Glucose oxidase (GOx) was then adsorptively immobilized on the modified BDD electrode. The biosensor displays a large surface area, high catalytic activity of the Pt nanoparticles, efficient electron mediation through the conducting polymer, and low background current of the electrode. The biosensor exhibits an excellent response to glucose, with a broad linear range from 5.9 μM to 0.51 mM, a sensitivity of 5.5 μA·mM?1, a correlation coefficient (R) of 0.9947, and a detection limit of 0.10 μM. The apparent Michaelis-Menten constant (K M app ) and the maximum current density of the electrode are 4.1 mM and 0.021 mA, respectively. This suggests that the immobilized GOx possesses a higher affinity for glucose at the lower K M app , and that the enzymatic reaction rate constitutes the rate-limiting step of the response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号