首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly of alternating DNA and positively charged poly‐(dimethyldiallylammonium chloride) (PDDA) multilayer films by electrostatic layer‐by‐layer adsorption has been studied. Real time surface plasmon resonance (BIAcore) technique was used to characterize and monitor the formation of multilayer films in solution in real time continuously. The results indicate that the uniform multilayer can be obtained on the poly‐(ethylenimine) (PEI) coated substrate surface. The kinetics of the adsorption of DNA on PDDA surface was also studied by real‐time BIAcore technique, and the observed rate constant was calculated using a Langmuir model (kobs = (1.28 ± 0.08) × 10?2s?1).  相似文献   

2.
Thin film formation via the Layer‐by‐Layer method is now a well‐established and broadly used method in materials science. We have been keenly interested in exploiting this technique in the area of gas separations. Specifically, we have sought to create hyperthin (<100 nm) polyelectrolyte‐based membranes that have practical potential for the separation of CO2 from N2 (flue gas) and H2 from CO2 (syngas). In this personal account, we summarize recent studies that have been aimed at measuring the influence of a variety of factors that can affect the permeability and permeation selectivity of hyperthin polyelectrolyte multilayers (PEMs).  相似文献   

3.
Layer‐by‐layer (LbL) assembly has emerged as the leading non‐vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide‐based barrier films. This Feature Article is a mini‐review of LbL‐based multilayer thin films with a ‘nanobrick wall’ microstructure comprising polymeric mortar and nano­platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water‐based thin films exhibit oxygen transmission rates below 5 × 10‐3 cm3 m‐2 day‐1 atm‐1 and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake‐filled polymers are briefly reviewed.

  相似文献   


4.
Electrochemical oxidation of a phospholipid, phosphatidylcholine (PC), was accomplished at a 4‐aminothiophenol (ATP)‐modified gold electrode coated with a layer‐by‐layer assembly of an electrochemical catalyst (dirhodium phosphomolybdic acid), a trapping agent for PC (a cyclophane, CP, derivative, 1,4‐xylylene‐1,4‐phenylene‐diacetate), and a spacer (generation‐4 polyamidoamine dendrimer, PAMAM). The layer‐by‐layer assembly process and the trapping of PC was verified by quartz crystal microbalance measurements; Au|ATP|CP|PAMAM|CP trapped (1.5±0.4)×10?9 mol cm?2 of PC. The electrocatalytic oxidation of PC yielded a current that varied linearly with concentration over the range 1–50 μM; the R2 value was 0.996.  相似文献   

5.
Two polysaccharides hydroxyethyl cellulose ethoxylate (HECE) and hyaluronic acid (HA) were assembled into {HECE/HA}n layer‐by‐layer films on electrodes. The films were then immersed in myoglobin (Mb) solutions to load Mb into the films. The Mb‐loaded films showed a nearly reversible cyclic voltammetric (CV) peak pair at ?0.34 V vs. SCE in pH 7.0 buffers. The effect of ionic strength in Mb loading solutions and CV testing solutions on the CV response of the films was investigated. The direct electrochemistry of Mb loaded in the films could also be used to electrocatalyze the reduction of oxygen and H2O2 in solution.  相似文献   

6.
7.
Micropatterned layer‐by‐layer (LbL) assemblies were studied as a potential platform for sensor applications by performing impedance characterization throughout a range of electrolyte concentrations. Conductive LbL thin films were prepared with carbon black nanoparticles dispersed in the polymer matrix to provide an electrically conductive network. LbL assemblies were micropatterned using a photolithographic lift‐off method, and a test circuit was constructed as multiple interdigitating coplanar electrodes. Impedance spectra were collected between 104 and 106 Hz within a flow cell containing NaCl solutions ranging from 0.001–1.0 M. These preliminary results demonstrate the ability to pattern conductive LbL composites and underscore the potential utility and shortcomings of their use in sensor applications.  相似文献   

8.
As an emerging concept for the development of new materials with nanoscale features, nanoarchitectonics has received significant recent attention. Among the various approaches that have been developed in this area, the fixed‐direction construction of functional materials, such as layered fabrication, offers a helpful starting point to demonstrate the huge potential of nanoarchitectonics. In particular, the combination of nanoarchitectonics with layer‐by‐layer (LbL) assembly and a large degree of freedom in component availability and technical applicability would offer significant benefits to the fabrication of functional materials. In this Minireview, recent progress in LbL assembly is briefly summarized. After introducing the basics of LbL assembly, recent advances in LbL research are discussed, categorized according to physical, chemical, and biological innovations, along with the fabrication of hierarchical structures. Examples of LbL assemblies with graphene oxide are also described to demonstrate the broad applicability of LbL assembly, even with a fixed material.  相似文献   

9.
10.
Sensitive and rapid detection of multiple analytes and the collection of components from complex samples are important in fields ranging from bioassays/chemical assays, clinical diagnosis, to environmental monitoring. A convenient strategy for creating magnetically encoded luminescent CdTe@SiO2@n Fe3O4 composite nanoparticles, by using a layer‐by‐layer self‐assembly approach based on electrostatic interactions, is described. Silica‐coated CdTe quantum dots (CdTe@SiO2) serve as core templates for the deposition of alternating layers of Fe3O4 magnetic nanoparticles and poly(dimethyldiallyl ammonium chloride), to construct CdTe@SiO2@n Fe3O4 (n=1, 2, 3, …?) composite nanoparticles with a defined number (n) of Fe3O4 layers. Composite nanoparticles were characterized by zeta‐potential analysis, fluorescence spectroscopy, vibrating sample magnetometry, and transmission electron microscopy, which showed that the CdTe@SiO2@n Fe3O4 composite nanoparticles exhibited excellent luminescence properties coupled with well‐defined magnetic responses. To demonstrate the utility of these magnetically encoded nanoparticles for near‐simultaneous detection and separation of multiple components from complex samples, three different fluorescently labeled IgG proteins, as model targets, were identified and collected from a mixture by using the CdTe@SiO2@n Fe3O4 nanoparticles.  相似文献   

11.
Raspberrylike organic/inorganic composite spheres are prepared by stepwise electrostatic assembly of polyelectrolytes and silica nanoparticles onto monodisperse polystyrene spheres. Hierarchically structured porous films of silica hollow spheres are fabricated from these composite spheres by layer‐by‐layer assembly with polyelectrolytes followed by calcination. The morphologies of the raspberrylike organic/inorganic composite spheres and the derived hierarchically structured porous films are observed by scanning and transmission electron microscopy. The surface properties of these films are investigated by measuring their water contact angles, water‐spreading speed, and antifogging properties. The results show that such hierarchically structured porous films of silica hollow spheres have unique superhydrophilic and antifogging properties. Finally, the formation mechanism of these nanostructures and property–structure relationships are discussed in detail on the basis of experimental observations.  相似文献   

12.
13.
Layer‐by‐layer (LBL) assembly is a versatile nanofabrication technique, and investigation of its kinetics is essential for understanding the assembly mechanism and optimizing the assembly procedure. In this work, the LBL assembly of polyelectrolyte and nanoparticles were monitored in situ by capillary electrophoresis (CE) for the first time. The assembly of poly(diallyldimethylammonium chloride) (PDDA), and gold nanoparticles (AuNPs) on capillary walls causes surface‐charge neutralization and resaturation, and thus yields synchronous changes in the electroosmotic flow (EOF). The EOF data show that formation of multilayers follows first‐order adsorption kinetics. On the basis of the fit results, influencing factors, including number of layers, concentration of materials, flow rate, and size of AuNPs, were investigated. The stability and robustness of the assembled coatings were also characterized by CE. It was found that degradation of PDDA layers follows first‐order chemical kinetics, while desorption of AuNPs takes place in a disorderly manner. The substrate strongly affects assembly of the underlying layer, while this effect is rapidly screened with increasing number of layers. Furthermore, we demonstrate that the EOF measuring step does not disturb LBL assembly, and the proposed method is reliable and rugged. This work not only studies in detail the LBL adsorption/desorption process of polyelectrolyte and nanoparticles, but also offers an alternative tool for monitoring multilayer buildup. It may also reveal the potential of CE in fields other than analytical separation.  相似文献   

14.
Films formed by oxidation of dopamine are of interest for functionalisation of solid–liquid interfaces owing to their versatility. However, the ability to modulate the properties of such films, for example, permeability to ionic species and the absorption coefficient, is urgently needed. Indeed, melanin films produced by oxidation of dopamine absorb strongly over the whole UV/Vis part of the electromagnetic spectrum and are impermeable to anions even for a film thickness as low as a few nanometers. Herein we combine oxidation of dopamine to produce a solution containing dopamine–melanin particles and their alternating deposition with poly(diallyldimethylammonium chloride) to produce films which have nearly the same morphology as pure dopamine–melanin films but are less compact, more transparent and more permeable to ferrocyanide anions.  相似文献   

15.
The synthesis, layer‐by‐layer deposition, and electro‐copolymerization of precursor polyelectrolyte multilayer ultrathin films with thiophene and carbazole electroactive groups are described. The interest is in observing an electrochemical cross‐linking approach towards a highly ordered ultrathin film that contains two types of monomers to result in possible layer‐limited homo‐ and copolymerization. A uniform linear growth with alternate deposition of the polyelectrolytes is observed. The multilayer films were then electrochemically polymerized anodically by cyclic voltammetry (CV), which results in copolymerization between two different electroactive groups. Cross‐linking of the layers was verified by CV and spectroelectrochemistry data with very good linear electro‐copolymerizability.

  相似文献   


16.
17.
《Electroanalysis》2004,16(20):1717-1722
A rational strategy for the construction of a bioelectrocatalytic architecture by means of alternate electrostatic adsorption is described. Multilayer films containing glucose oxidase (GOx) and different polyelectrolytes were assembled onto a thiolated‐gold surface and the resulting bioelectrode was used for glucose biosensing. The supramolecular multistructure was prepared by assembling polyethylenimine and Nafion (as anti‐interference barrier), followed by the adsorption of polyethylenimine and DNA (as stabilizing film) and finally by the alternate deposition of polyethylenimine and glucose oxidase (as a biocatalytic layer). The influence of the deposition time and concentration of polyelectrolytes, organization and number of layers on the sensitivity and selectivity of the bioelectrode is discussed. The resulting enzymatic biorecognition layer exhibits very good analytical performance with a fast, sensitive (3.3±0.1)×104 nA M?1 and highly selective (0% interference for 6.0 mg % uric acid and 2.0×10?4 M ascorbic acid) response to glucose, demonstrating that the alternate electrostatic adsorption of conveniently selected polyelectrolytes allow a large improvement in the selectivity and sensitivity of a biosensor.  相似文献   

18.
Layer‐by‐layer (LBL) films consisting of layers of the azo dye Sunset Yellow alternated with chitosan display spontaneous birefringence, which is attributed to the film anisotropy imparted by the LBL method. This is unusual for azobenzene‐containing materials as they normally form films with randomly oriented molecules, presenting birefringence only due to photoinduced isomerization cycles. Spontaneous birefringence does not appear in cast films, but occurs for LBL films obtained under various experimental conditions.

Chemical structures of (a) Sunset Yellow and (b) chitosan.  相似文献   


19.
Lavender layers : A poly(p‐phenylene) anionic derivate and exfoliated Mg‐Al layered double hydroxide monolayers were assembled into ultrathin films with well‐defined blue fluorescence (see picture; the numbers indicate the number of bilayers), long‐range order, and high photostability. These films work as multiple quantum‐well structures for valence electrons.

  相似文献   


20.
Polymeric scaffolds serve as valuable supports for biological cells since they offer essential features for guiding cellular organization and tissue development. The main challenges for scaffold fabrication are i) to tune an internal structure and ii) to load bio‐molecules such as growth factors and control their local concentration and distribution. Here, a new approach for the design of hollow polymeric scaffolds using porous CaCO3 particles (cores) as templates is presented. The cores packed into a microfluidic channel are coated with polymers employing the layer‐by‐layer (LbL) technique. Subsequent core elimination at mild conditions results in formation of the scaffold composed of interconnected hollow polymer microspheres. The size of the cores determines the feature dimensions and, as a consequence, governs cellular adhesion: for 3T3 fibroblasts an optimal microsphere size is 12 μm. By making use of the carrier properties of the porous CaCO3 cores, the microspheres are loaded with BSA as a model protein. The scaffolds developed here may also be well suited for the localized release of bio‐molecules using external triggers such as IR‐light.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号