首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Layered double hydroxides are a family of inorganic crystals that have gained a lot of attention due to its special structure and properties such as high porosity, large specific area, and excellent anion exchange ability. In this work, flower‐like NiAl‐layered double hydroxides with high specific area were in situ immobilized onto the stainless steel fibers by bioinspired polydopamine modification method and packed into poly (ether ether) ketone tube for online solid‐phase microextraction with high performance liquid chromatography analysis. Thanks to the high specific surface area and excellent extraction ability of the NiAl‐layered double hydroxides, the fibers showed excellent extraction performance to three Sudan dyes with enrichment factors between 260 to 650 folds. After optimization of the reaction and extraction conditions, an online solid‐phase microextraction method was developed for determination of Sudan dyes in water samples and chili samples. The method has limits of detection of 0.01 to 0.02 ng/mL, good linearity and good reproducibility (≤1.45%).  相似文献   

2.
A poly(vinylphenylboronic acid–ethylene glycol dimethacrylate) monolithic material incorporated with graphene oxide was synthesized inside a poly(ether ether ketone) tube. This tube with boronate affinity monolith was coupled with a high‐performance liquid chromatography system through a six‐port valve to construct an online solid‐phase microextraction with high‐performance liquid chromatography system. The performance of this solid‐phase microextraction with high‐performance liquid chromatography system was demonstrated by standard glycoprotein in aqueous samples, namely, horseradish peroxidase. Some parameters that affect the extraction performance were investigated, including sampling rate, pH of sample solution, and sampling volume. Under the optimized conditions, the developed method showed high extraction efficiency toward horseradish peroxidase. The addition of graphene oxide greatly increased the extraction efficiency of boronate affinity monolith for horseradish peroxidase. The limit of detection of the proposed method was as low as 0.01 μg/mL by using ultraviolet detection. The recognition specificity was also evaluated by analyzing the mixture of bovine serum albumin (nonglycoprotein) and horseradish peroxidase. The results showed that this material could selectively extract horseradish peroxidase from the mixture, indicating its good specificity toward glycoproteins. The proposed method was further applied for analyzing rat plasma samples spiked with horseradish peroxidase. Good recovery and repeatability were obtained.  相似文献   

3.
To improve the durability and extraction efficiency of an ionic liquid coating, 1‐dodecyl‐3‐vinylimidazolium bromide was polymerized and grafted onto basalt fibers for in‐tube solid‐phase microextraction. To develop an extraction tube, basalt fibers grafted with the poly(ionic liquids) coating were filled into a polyether ether ketone tube with a 0.75 mm inner diameter. The extraction tube was connected to high‐performance liquid chromatography system equipped with a sampling pump to build an online enrichment and analysis system. Using four common phthalates as model analytes, the extraction tube was investigated by the online analysis system. Good enrichment performance was exhibited by high enrichment factors ranging from 851 to 1858. Under the optimum conditions, an online analysis method was established, and good linearity (0.03–12 and 0.15–12 μg/L) and low limits of detection (0.01–0.05 μg/L) were achieved. This analysis method was applied to real samples including water in a disposable plastic box and the bottled water, some targets were detected but not quantified, and the relative recoveries spiked at 2, 5 and 10 μg/L were in the range of 86.4–119.5%.  相似文献   

4.
Polydopamine was coated onto cotton fibers as the adsorbent to improve the extraction efficiency. Polydopamine‐coated cotton fibers were placed into a polyetheretherketone tube for in‐tube solid‐phase microextraction. To develop an online analysis system, the extraction tube was connected with high‐performance liquid chromatography. The tube was evaluated with five estrogenic analytes, and the extraction and desorption conditions were optimized to get high extraction efficiency. Under the optimum conditions, the enrichment factors of five analytes were 143–1745. An online analysis method was established, it had large linear ranges (0.10–40 and 0.16–40 μg/L), low limits of detection (0.03, 0.05 μg/L) and satisfactory repeatability (≤3.2%). The analysis method was applied to detect targets in the real samples like as hot water in new plastic cup and tap water. The relative recoveries spiked at 1 and 5 μg/L in these samples were investigated and the results were in the range of 83.7–109%.  相似文献   

5.
Graphene oxide has received extensive attention because of its unique properties and potential applications. In this study, magnetic nitrogen‐doped graphene was prepared by one‐step hydrothermal reaction using urea as the dopant and reductant, and ferroferric oxide nanoparticles were in situ deposited on the surface of the nanohybrids. The magnetic nitrogen‐doped graphene was characterized using various physical and chemical methods. It was used as a new adsorbent for the magnetic solid‐phase extraction of four nonsteroidal anti‐inflammatory drugs from the river water. The parameters influencing the extraction efficiency were optimized in detail. Under optimal conditions, this method provided a wide linear range (5–200 ng/mL). The limits of detection were in the range of 1.07–5.10 ng/mL. The recoveries varied from 81.2 to 121.5% with relative standard deviations of less than 10.8%. Overall, we can conclude that the proposed method offers an efficient pretreatment and enrichment and can be successfully applied for the extraction and determination of nonsteroidal anti‐inflammatory drugs in complex matrices.  相似文献   

6.
Basalt fibers were functionalized with gold nanoparticles and characterized by scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. An in‐tube solid‐phase microextraction device was developed by packing the functionalized basalt fibers in a polyether ether ketone tube. The device was connected into high performance liquid chromatography equipment with a diode array detector to build online enrichment and analysis system. Eight polycyclic aromatic hydrocarbons were used as model analytes, important factors including sampling rate, sampling volume, organic solvent content in sample, and desorption time were investigated. Linear range (0.01–20 μg/L), detection limits (0.003–0.015 μg/L), and enrichment factors (130–1628) were given by the online analysis method. Relative standard deviations (= 5) of extraction repeatability on one tube and tube‐to‐tube repeatability were less than 5.2 and 14.7%, respectively. The analysis method was applied to detect polycyclic aromatic hydrocarbons in environmental water samples, and relative recoveries ranged from 87 to 128%.  相似文献   

7.
A new robust method of electromembrane‐surrounded solid‐phase microextraction coupled to ion mobility mass spectrometry was applied for nonsteroidal anti‐inflammatory drugs determination in complex matrices. This is the first time that a graphene/polyaniline composite coating is applied in electromembrane‐surrounded solid‐phase microextraction method. The homemade graphene/polyaniline composite is characterized by a high electrical conductivity and thermal stability. The variables affecting electromembrane‐surrounded solid‐phase microextraction, including extraction time; applied voltage and pH were optimized through chemometric methods, central composite design, and response surface methodology. Under the optimized conditions, limits of detection of 0.04 and 0.05 ng/mL were obtained for mefenamic acid and ibuprofen, respectively. The feasibility of electromembrane‐surrounded solid‐phase microextraction followed by ion mobility mass spectrometry was successfully confirmed by the extraction and determination of low levels of ibuprofen and mefenamic acid in human urine and plasma samples and satisfactory results were obtained.  相似文献   

8.
Stainless‐steel wires coated with mesoporous titanium oxide were placed into a polyether ether ketone tube for in‐tube solid‐phase microextraction, and the coating sorbent was characterized by X‐ray diffraction and scanning electron microscopy. It was combined with high‐performance liquid chromatography to build an online system. Using eight polycyclic aromatic hydrocarbons as the analytes, some conditions including sample flow rate, sample volume, organic solvent content, and desorption time were investigated. Under optimum conditions, an online analysis method was established and provided good linearity (0.03–30 μg/L), low detection limits (0.01–0.10 μg/L), and high enrichment factors (77.6–678). The method was applied to determine target analytes in river water and water sample of coal ash, and the recoveries are in the range of 80.6–106.6 and 80.9–103.5%, respectively. Compared with estrogens and plasticizers, extraction coating shows better extraction efficiency for polycyclic aromatic hydrocarbons.  相似文献   

9.
A simple, environmentally friendly, and sensitive dispersive liquid–liquid microextraction based on solidification of floating organic droplet for the extraction of four acidic nonsteroidal anti‐inflammatory drugs (ketoprofen, naproxen, ibuprofen, and diclofenac) from wastewater samples subsequent by high‐performance liquid chromatography analysis was developed. The influence of extraction parameters such as pH, the effect of solution ionic strength, type of extraction solvent, disperser solvent, and extraction solvent volume were studied. High enrichment factors (283–302) were obtained through the developed method. The method provides good linearity (r > 0.999) in a concentration range of 1–100 μg/L, good intra‐ and inter‐day precision (relative standard deviation < 7%) and low limits of quantification. The relative recoveries of the selected compounds were situated over 80% both in synthetic and real water samples. The developed method has been successfully applied for the analysis of the selected compounds in wastewater samples.  相似文献   

10.
The presence of pharmaceuticals in the environment due to growing worldwide consumption has become an important problem that requires analytical solutions. This paper describes a CE determination for several nonsteroidal anti‐inflammatory drugs (ibuprofen, naproxen, ketoprofen, diclofenac, ketorolac, aceclofenac and salicylic acid) in environmental waters using hollow fiber membrane liquid‐phase microextraction. The extraction was carried out using a polypropylene membrane supporting dihexyl ether and the electrophoretic separation was performed in acetate buffer (30 mM, pH 4) using ACN as the organic modifier. Detection limits between 0.25 and 0.86 ng/mL were obtained, respectively. The method could be applied to the direct determination of the seven anti‐inflammatories in wastewaters, and five of them have been determined or detected in different urban wastewaters.  相似文献   

11.
Natural cotton fiber was applied as a green extraction material for in‐tube solid‐phase microextraction. Cotton fibers were characterized by scanning electron microscope. A bundle of cotton fibers (685 mg, 20 cm) was directly packed into a polyetheretherketone tube (i.d. 0.75 mm) to get the extraction device. It was connected into high performance liquid chromatography, building an online extraction and dectection system. Through the online analysis system, several polycyclic aromatic hydrocarbons were used as the targets to evaluate the extraction performace of the device. In order to get high extraction efficiency and sensitivity, the extraction and desorption conditions were optimized. Under the optimum conditions, the sensitive analysis method was established, and provided low limits of detection of 0.02 and 0.05 μg/L, good linearity ranges of 0.06–15 and 0.16–15 μg/L, as well as high enrichment factors of 176–1868. The method was applied to the online determination of trace polycyclic aromatic hydrocarbons in snow water and river water, and the relative recoveries corresponding to 2 and 5 μg/L were in the range of 80–116%. The repeatability of extraction and preparation of the device was investigated and the relative standard deviations (n = 3) were less than 3.6 and 5.2%.  相似文献   

12.
Cotton fiber is an environmentally friendly and natural material with a certain extraction capacity, while its enrichment ability is poor. In order to improve the extraction efficiency of cotton fibers, it was carbonized to form a layer of amorphous carbon as the sorbent by a simple carbonization method. Carbonized cotton fibers were filled into a polyetheretherketone tube for in‐tube solid‐phase microextraction. The carbonization time was investigated to obtain high extraction efficiency. Coupled to high‐performance liquid chromatography, the extraction tube was evaluated with polycyclic aromatic hydrocarbons, estrogens and phthalates, and it exhibited best extraction efficiency for polycyclic aromatic hydrocarbons. Under the optimum conditions, an online analysis method for several polycyclic aromatic hydrocarbons was established with large linear ranges (0.016–0.20 μg/L), low limits of detection (0.005–0.020 μg/L), and high enrichment factors (948–2874). Analysis method was successfully applied to the detection of targets in the real samples and shown satisfactory durability and chemical stability. Moreover, the relative recoveries ranged from 82 to 119.2%, which demonstrated the applicability of carbonized cotton fibers in sample preparation. Compared with other reported methods, the proposed method provided shorter extraction time, higher enrichment factors, comparable limits of detection, and recoveries.  相似文献   

13.
Polyetheretherketone tube is a better substrate for in‐tube solid‐phase microextraction than fused‐silica capillary and metal tube because of its resistance to high pressure and good flexibility. It was modified with a nanostructured silver coating, and characterized by scanning electron microscopy and energy dispersive X‐ray spectroscopy. It was connected into high‐performance liquid chromatography equipment to build the online analysis system by replacing the sample loop of a six‐port injection valve. To get the highest extraction capacity, the preparation conditions of the coating was investigated. Important extraction conditions including length of tube, sample volume, and desorption time were optimized using eight polycyclic aromatic hydrocarbons as model analytes. The tube exhibits excellent extraction efficiency toward them, with enrichment factors from 52 to 363. The online analysis method provides good linearity (0.5–100 or 1.0–100 μg/L) and low detection limits (0.15–0.30 μg/L). It has been used to determine polycyclic aromatic hydrocarbons in water samples, with relative recoveries in the range of 92.3–120%. The tube showed highest extraction ability for polycyclic aromatic hydrocarbons, higher extraction ability for hydrophobic phthalates and anilines, and almost no extraction ability for low hydrophobic phenols, due to the possible extraction mechanism including hydrophobic and electron‐rich element‐metal interactions.  相似文献   

14.
An in‐tube solid‐phase microextraction device was developed by packing poly(ionic liquids)‐coated stainless‐steel wires into a polyether ether ketone tube. An anion‐exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)‐coated stainless‐steel wires were characterized by scanning electron microscopy and energy dispersive X‐ray spectrometry. The extraction device was connected to high‐performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03–20 μg/L, detection limits of 0.010–0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1–118.9%.  相似文献   

15.
Ionic liquids have been widely used in different fields by advantage of their specific properties. In this work, 1‐methyl‐3‐(3‐trimethoxysilyl propyl)imidazolium chloride was prepared and chemically bonded onto basalt fibers for in‐tube solid‐phase microextraction. Through combining in‐tube extraction device with high‐performance liquid chromatography equipped with a diode array detector, an online enrichment and analysis method for eight polycyclic aromatic hydrocarbons was established under the optimum conditions. A good enrichment factor (52–814), good linearity (0.10–15 and 0.20–15 μg/L), low limits of detection (0.03–0.05 μg/L), and low limits of quantitation (0.10–0.20 μg/L) were achieved using a sample volume of 50 mL. Analysis method was applied to the real samples including the groundwater and wastewater from a chemical industry park, some target analytes were detected and the relative recoveries were in the range of 80.4–116.8%.  相似文献   

16.
Triazine‐based organic polymers@SiO2 nanospheres were prepared and applied as an extraction coating onto stainless steel wires and the wires were filled into polyetheretherketone tube for in‐tube solid‐phase microextraction. Taking polycyclic aromatic hydrocarbons as targets, main factors affecting extraction performance of the tube were investigated through coupling to high performance liquid chromatography. Under the optimum conditions, an online analytical method for polycyclic aromatic hydrocarbons was established with large linear ranges (0.010‐20 µg/L), low limits of detection (0.003‐0.010 µg/L), high enrichment factors (533‐2954), and good repeatability (relative standard deviations <1.7% for intraday test, <5.0% for interday test). The analysis method was successfully applied to the detection of trace targets in real water samples and the relative recoveries ranged from 82.9 to 119.9%, which demonstrated the applicability of extraction tube in sample preparation.  相似文献   

17.
A simple method is introduced providing a highly clean microextraction for the determination of some anti‐inflammatory drugs as the model analytes in human urine and environmental matrices. This method is based upon the implementation of two consecutive emulsification liquid‐phase microextractions, which are separated by a syringe filtration step. In this method, the organic extraction solvent (dihexyl ether) is dispersed into the aqueous sample solution (20 mL), and the resulting cloudy mixture is passed through a hydrophilic polytetrafluoroethylene syringe filter. By this action, the extraction phase containing the analytes and many interfering species that could be transferred into the organic phase is retained behind the hydrophilic membrane. The filter is then detached from the syringe and attached to another syringe containing an aqueous solution (pH 12.0, 150 μL), and by the in‐syringe dispersion of the organic phase into the aqueous phase, the analytes are selectively back‐extracted into the aqueous phase. The developed method is centrifuge‐free and very simple, and provides a high sample clean‐up in a few minutes. Under the optimized experimental conditions, the developed method provided a linearity in the range of 2.0–2000 ng/mL, a low limit of detection (0.5 ng/mL), and enrichment factors of 47–53.  相似文献   

18.
To enhance the extraction performance, a mesoporous silica was modified with ordered mesoporous carbon for solid‐phase microextraction. Three stainless‐steel wires coated with the mesoporous material were placed in a polyetheretherketone tube for getting an extraction tube. The tube was coupled to high‐performance liquid chromatography with diode array detector, and the online analysis system was constructed. Then its extraction performance was evaluated using hydrophobic polycyclic aromatic hydrocarbons, phthalates, and hydrophilic neonicotinoids. The best selectivity was presented for polycyclic aromatic hydrocarbons. Several main conditions were optimized such as sampling volume, sampling rate, methanol concentration in the sample, and desorption time, a rapid and sensitive analytical method was established toward polycyclic aromatic hydrocarbons. The analytical method exhibited wide linear range from 0.017 to 15 µg/L with acceptable correlation coefficients more than 0.9990, limits of detection in 0.005‐0.020 µg/L, limits of quantification ranging from 0.017 to 0.066 µg/L as well as large enrichment factors of 377‐2314. It was successfully applied to detect trace polycyclic aromatic hydrocarbons in some real water samples including tap water, snow water, and domestic sewage.  相似文献   

19.
Polypropylene hollow fibers as the adsorbent were directly filled into a polyetheretherketone tube for in‐tube solid‐phase microextraction. The surface properties of hollow fibers were characterized by a scanning electron microscope. Combined with high performance liquid chromatography, the extraction tube showed good extraction performance for five environmental estrogen hormones. To achieve high analytical sensitivity, four important factors containing sampling volume, sampling rate, content of organic solvent in sample, and desorption time were investigated. Under the optimum conditions, an online analysis method was established with wide linear range (0.03–20 µg/L), good correlation coefficients (≥0.9998), low limits of detection (0.01–0.05 µg/L), low limits of quantitation (0.03–0.16 µg/L), and high enrichment factors (1087–2738). Relative standard deviations (n = 3) for intraday (≤3.6%) and interday (≤5.1%) tests proved the stable extraction performance of the material. Durability and chemical stability of the extraction tube were also investigated, relative standard deviations of all analytes were less than 5.8% (n = 3), demonstrating the satisfactory stability. Finally, the method was successfully applied to detect estrogens in real samples.  相似文献   

20.
A mesoporous silica was functionalized by carbon nanotubes to enhance the extraction performance. The mesoporous material was coated on stainless steel wires, and three wires were inserted inside of a polyetheretherketone tube for in‐tube solid‐phase microextraction. The tube was coupled to high‐performance liquid chromatography with diode array detection to obtain online analytical system, then its extraction performance was evaluated using eight polycyclic aromatic hydrocarbons as the targets. In order to good sensitivity and accuracy, four conditions were optimized such as sampling volume, sampling rate, methanol content in the sample, and desorption time. Under the optimum conditions, an online analytical method was established and exhibited low limits of detection from 0.005 to 0.050 µg/L, wide linear range of 0.016‐20.00 µg/L with acceptable correlation coefficients in 0.9921‐0.9999, as well as large enrichment factors in the range of 311‐2412. The method was successfully applied to determine trace polycyclic aromatic hydrocarbons in some real water samples including, two kinds of bottled water, tap water, and river water, a few polycyclic aromatic hydrocarbons were detected but none quantified in these samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号