首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cover Picture     
《中国化学》2020,38(2):113-113
The cover picture shows a critical review on the organic reactions catalyzed by dinucleating complexes via metal‐metal cooperation. The reaction modes for the catalysis involving late transition metals are including the bimetallic co‐activation of single molecules and dual‐activation of two molecules. More details including the pathways of the metal‐metal cooperation are discussed by Zeng et al. on page 185—201.

  相似文献   


2.
Tetrahydrocarbazol‐4‐one represents a prevalent framework of numerous natural products and pharmaceuticals. This review summaries the recent synthetic progresses of this core structure, including Fischer indolization, oxidative and reductive coupling, α‐arylative cyclization by means of transition‐ metal catalysis or under metal‐free conditions, and other methods. The recently emerged enantioselective catalytic methods of tetrahydrocarbazol‐4‐ ones are also described. The mechanistic insights and applications of these strategies as a key step in the total (formal) synthesis of complex alkaloids are highlighted as well.  相似文献   

3.
Tandem catalysts that perform two different organic transformations in a single pot are highly desirable because they enable rapid and efficient assembly of simple organic building blocks into more complex molecules. Many examples of tandem catalysis rely on metal-catalyzed reactions involving one or more metal complexes. Remarkably, despite surging interest in the development of chemically reactive (i. e., non-innocent) ligands, there are few examples of metal complexes that leverage ligand-centered reactivity to perform catalytic reactions in tandem with separate catalytic reactions at the metal. Here we report how multifunctional Pd complexes with triaminoborane-derived diphosphorus ligands, called TBDPhos, appear to facilitate borenium-catalyzed cycloaddition reactions at the ligand, and Pd-catalyzed Stille and Suzuki cross-coupling reactions at the metal. Both transformations can be accessed in one pot to afford rare examples of tandem catalysis using separate metal and ligand catalysis sites in a single complex.  相似文献   

4.
An emerging area of homogeneous catalysis is the use of catalysts featuring two closely associated metal sites. This approach complements the traditional focus on single‐site catalysts and makes available new parameters with which to optimize catalytic behavior. Single‐site catalysts are optimized through changing 1) the identity of the metal, and 2) the steric and electronic properties of the ligands. Bimetallic catalysts introduce new optimization parameters such as 3) catalyst nuclearity (mononuclear vs. binuclear), and 4) bimetallic pairing (relative compatibility of two metal sites). In order to harness these new optimization parameters in developing systems, it is necessary to first understand the origin of bimetallic selectivity effects that already have been documented. This Concept article highlights bimetallic effects on the chemo‐, regio‐, and stereoselectivity of catalytic transformations, using selected case studies from the recent literature as illustrative examples.  相似文献   

5.
Over the past decade s-block metal catalysis has undergone a transformation from being an esoteric curiosity to a well-established and consolidated field towards sustainable synthesis. Earth-abundant metals such as Ca, Mg, and Al have shown eye-opening catalytic performances in key catalytic processes such as hydrosilylation, hydroamination or alkene polymerization. In parallel to these studies, s-block mixed-metal reagents have also been attracting widespread interest from scientists. These bimetallic reagents effect many cornerstone organic transformations, often providing enhanced reactivities and better chemo- and regioselectivities than conventional monometallic reagents. Despite a significant number of synthetic advances to date, most efforts have focused primarily on stoichiometric transformations. Merging these two exciting areas of research, this Perspective Article provides an overview on the emerging concept of s/p-block cooperative catalysis. Showcasing recent contributions from several research groups across the world, the untapped potential that these systems can offer in catalytic transformations is discussed with special emphasis placed on how synergistic effects can operate and the special roles played by each metal in these transformations. Advancing the understanding of the ground rules of s-block cooperative catalysis, the application of these bimetalic systems in a critical selection of catalytic transformations encompassing hydroamination, cyclisation, hydroboration to C–C bond forming processes are presented as well as their uses in important polymerization reactions.

Exporting cooperative effects in main group heterobimetallic reagents to catalytic regimes, this Perspective showcases key advances in their applications for hydroelementation, cyclisation, C–C bond formation and polymerization processes.  相似文献   

6.
Small-sized bimetallic nanoparticles that integrate the advantages of efficient exposure of the active metal surface and optimal geometric/electronic effects are of immense interest in the field of catalysis, yet there are few universal strategies for synthesizing such unique structures. Here, we report a novel method to synthesize sub-2 nm bimetallic nanoparticles (Pt–Co, Rh–Co, and Ir–Co) on mesoporous sulfur-doped carbon (S–C) supports. The approach is based on the strong chemical interaction between metals and sulfur atoms that are doped in the carbon matrix, which suppresses the metal aggregation at high temperature and thus ensures the formation of small-sized and well alloyed bimetallic nanoparticles. We also demonstrate the enhanced catalytic performance of the small-sized bimetallic Pt–Co nanoparticle catalysts for the selective hydrogenation of nitroarenes.

The strong interactions between metal and sulfur atoms doped in a carbon matrix allow for the synthesis of supported sub-2 nanometer M–Co (M = Pt, Rh, Ir) bimetallic nanocluster catalysts.  相似文献   

7.
金属纳米颗粒,特别是金和它的双金属纳米颗粒作为强大的绿色催化剂广泛用于有机合成反应中。在一个反应体系中使用2个不同催化剂(如协同催化),在均相催化中是一个很好的策略。然而,这种方法仍在发展中。最近我们发现,金/钯双金属纳米颗粒与路易斯酸的协同催化体系可用于伯胺的N-烷基化:即酰胺与醇之间的氢自转移反应。我们详细报道了路易斯酸对该氢自转移反应的影响。结果表明,所选的路易斯酸不仅影响生成目标产物的反应路径,而且影响生成多个中间体和副产物的反应路径。弱的路易斯酸,如三氟甲磺酸碱土金属盐,非常适合酰胺的N-烷基化反应。  相似文献   

8.
Inside Cover     
《中国化学》2020,38(6):534-534
Reactions of homoleptic rare‐earth aryloxides based Lewis pairs with organic azides were investigated, which gave either bimetallic rare‐earth azide complexes in an end‐to‐end fashion or FLP‐type 1,1‐addition product depending on the nature of azide reagents. The current reaction was found to be applicable for Lewis acids across the full range of rare‐earth metals. More details are discussed in the article by Xu et al. on page 559—564.

  相似文献   


9.
Non-noble metal isolated single atom site (ISAS) catalysts have attracted much attention due to their low cost, ultimate atom efficiency and outstanding catalytic performance. Herein, atomically dispersed Fe atoms are prepared by a covalent organic framework (COF)-absorption–pyrolysis strategy. The obtained Fe ISASs anchored on COF-derived N-doped carbon nanospheres (Fe-ISAS/CN) served as a multi-functional catalyst in electro-catalysis and organic catalysis, exhibiting better catalytic performance than commercial Pt/C for the ORR with good stability and methanol tolerance. Besides electro-catalysis, the Fe-ISAS/CN also showed outstanding catalytic performance in organic reactions, such as the selective oxidation of ethylbenzene to acetophenone and dehydrogenation of 1,2,3,4-tetrahydroquinoline with excellent reactivity, selectivity, stability and recyclability. Co and Ni ISAS materials can also be prepared by this method, suggesting that it is a general strategy to obtain metal ISAS catalysts. This work will provide new insight into the design of COF-derived metal ISAS multi-functional catalysts for electro-catalysis and organic reactions using rationally designed synthetic routes and the optimized structure of substrates.

Fe isolated single-atom sites anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts.  相似文献   

10.
Organocatalysis, catalysis using small organic molecules, has recently evolved into a general approach for asymmetric synthesis, complementing both metal catalysis and biocatalysis. 1 Its success relies to a large extent upon the introduction of novel and generic activation modes. 2 Remarkably though, while carboxylic acids have been used as catalyst directing groups in supramolecular transition‐metal catalysis, 3 a general and well‐defined activation mode for this useful and abundant substance class is still lacking. Herein we propose the heterodimeric association of carboxylic acids with chiral phosphoric acid catalysts as a new activation principle for organocatalysis. This self‐assembly increases both the acidity of the phosphoric acid catalyst and the reactivity of the carboxylic acid. To illustrate this principle, we apply our concept in a general and highly enantioselective catalytic aziridine‐opening reaction with carboxylic acids as nucleophiles.  相似文献   

11.
Metal/ligand in situ assembly is crucial for tailoring the reactivity & selectivity in transition metal catalysis. Cooperative catalysis via a single metal/two ligands is still underdeveloped, since it is rather challenging to harness the distinct reactivity profiles of the species generated by self-assembly of a single metal precursor with a mixture of different ligands. Herein, we report a catalytic system composed of a single metal/two ligands for a three-component reaction of polyfluoroarene, α-diazo ester, and allylic electrophile, leading to highly efficient construction of densely functionalized quaternary carbon centers, that are otherwise hardly accessible. Mechanistic studies suggest this reaction follows a cooperative bimetallic pathway via two catalysts with distinct reactivity profiles, which are assembled in situ from a single metal precursor and two ligands and work in concert to escort the transformation.  相似文献   

12.
Transition metal-based bimetallic oxides can effectively activate peroxymonosulfate(PMS) for the degradation of organic contaminants, which may be attributed to the enhanced electron transfer efficiency between transition metals. Here, we investigated the high-efficiency catalytic activation reaction of PMS on a well-defined bimetallic Fe-Mn nanocomposite(BFMN) catalyst. The surface topography and chemical information of BFMN were simultaneously mapped with nanoscale resolution. Rhodamine B(Rh B...  相似文献   

13.
Back Cover     
《中国化学》2020,38(2):224-224
The back cover picture shows an efficient organic ligand‐free heterogeneous catalytic system for hydroformylation of olefins with simple Rh particles as the catalyst. The Rh black catalyst showed good catalytic activity for a broad substrate scope including the aliphatic and aromatic olefins, affording the desired aldehydes in good yields. The catalyst could be reused several times without loss of activity under identical reaction conditions, and the Rh leaching was negligible after each cycle. More details are discussed in the article by Shi et al. on page 139 143.

  相似文献   


14.
Despite wide applications of bimetallic electrocatalysis in oxygen evolution reaction (OER) owing to their superior performance, the origin of the improved performance remains elusive. The underlying mechanism was explored by designing and synthesizing a series of stable metal–organic frameworks (MOFs: NNU‐21–24 ) based on trinuclear metal carboxylate clusters and tridentate carboxylate ligands. Among the examined stable MOFs, NNU‐23 exhibits the best OER performance; particularly, compared with monometallic MOFs, all the bimetallic MOFs display improved OER activity. DFT calculations and experimental results demonstrate that introduction of the second metal atom can improve the activity of the original atom. The proposed model of bimetallic electrocatalysts affecting their OER performance can facilitate design of efficient bimetallic catalysts for energy storage and conversion, and investigation of the related catalytic mechanisms.  相似文献   

15.
Supported bimetallic catalysts have been studied because of their enhanced catalytic properties due to metal‐metal interactions compared with monometallic catalysts. We focused on galvanic deposition (GD) as a bimetallization method, which achieves well‐defined metal‐metal interfaces by exchanging heterogeneous metals with different ionisation tendencies. We have developed Ni@Ag/SiO2 catalysts for CO oxidation, Co@Ru/Al2O3 catalysts for automotive three‐way reactions and Pd−Co/Al2O3 catalysts for methane combustion by using the GD method. In all cases, the catalysts prepared by the GD method showed higher catalytic activity than the corresponding monometallic and bimetallic catalysts prepared by the conventional co‐impregnation method. The GD method provides contact between noble and base metals to improve the electronic state, surface structure and reducibility of noble metals.  相似文献   

16.
Inside Cover     
《中国化学》2021,39(1):2-2
Chiral structure is very common in nature. especially, the chiral materials could rotate the polarized light. Light‐matter interaction is very important for process of nature. Inorganic nanomaterials with unique chiral configuration and suitable size have shown exquisitely chiral recognition and selective catalysis function, similar to natural restriction endonuclease. There are no unbridgeable gulf between organic molecules and inorganic materials. The physical and chemical mechanisms involved in chiral phenomenon are very helpful to exploit novel application of chiral materials in biological sensing, imaging, gene editing and information communications. More details are discussed in the article by Kuang et al. on page 25—31.

  相似文献   


17.
Inside Cover     
《中国化学》2020,38(10):1026-1026
This review summarizes key development of N‐heterocyclic carbene organic catalysis, with a particular focus on the basic activation and reaction modes enabled by NHCs. More details are discussed in the article by Chi et al. on page 1167—1202.

  相似文献   


18.
Generation of carbon‐metal species is extremely important in transition metal‐catalyzed organic synthesis. Among the various methods, 1,4‐metal migration is a very useful way to create new carbon‐metal species, which are not readily accessible via classic methods. This review summarized recent advances in transition metal‐catalyzed reactions, which involved one or more steps of 1,4‐metal migration. It focused mostly on the achievements in Pd and Rh‐catalyzed reactions, along with some of the remarkable results in Pt, Ir, Co, Fe‐involved transformations.  相似文献   

19.
Oxidizing gold? A gold(I)/gold(III) catalytic cycle is essential for the first oxidative cross‐coupling reaction in gold catalysis. By using Selectfluor for gold(I) oxidation, this chemistry reveals the synthetic potential of incorporating gold(I)/gold(III) catalytic cycles into contemporary gold chemistry and promises a new area of gold research by merging powerful gold catalysis and oxidative metal‐catalyzed cross‐coupling reactions.

  相似文献   


20.
4,5-Dihydropyridazinones bearing an aryl substituent at the C6-position are important motifs in drug molecules. Herein, we developed an efficient protocol to access aryl-dihydropyridazinone molecules via carbene-catalyzed asymmetric annulation between dinucleophilic arylidene hydrazones and bromoenals. Key steps in this reaction include polarity-inversion of aryl aldehyde-derived hydrazones followed by chemo-selective reaction with enal-derived α,β-unsaturated acyl azolium intermediates. The aryl-dihydropyridazinone products accessed by our protocol can be readily transformed into drugs and bioactive molecules.

Polarity inversion of arylidene hydrazones to react with bromoenals via carbene organic catalysis is disclosed. The reaction enantioselectively affords 6-aryl-4,5-dihydropyridazinones and related drugs with proven commercial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号