首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 7 毫秒
1.
Arginase represents a promising therapeutic target for various pathologies including inflammatory, cardiovascular, and parasitic diseases or cancers. In the current work, we report, for the first time, about the development of a thin‐layer chromatography‐based bioautography which can be used to rapidly detect arginase inhibitors in complex matrices such as plant extracts. The assay is based on the detection of urea produced by arginase using the coloring reagent α‐isonitrosopropiophenone, resulting in the formation of a pink background on thin‐layer chromatography plates. The assay conditions were optimized in order to provide sufficient contrast between the pink colored thin‐layer chromatography plate and the clearer zones generated by the presence of arginase inhibitors. Different parameters were tested, such as incubation time and temperature, atmospheric conditions, as well as substrate and enzyme concentrations. This technique makes it possible to detect 0.1 μg of a known arginase inhibitor, Nω‐hydroxy‐nor‐Arginine, after it has been spotted, either pure or mixed with a Myrtus communis methanolic fruit extract, and the plate has been developed in an appropriate solvent. The newly developed method was used to reveal the presence of an inhibitor in hempseed cakes (Cannabis sativa L.).  相似文献   

2.
A sensitive and convenient method for acidic catecholamine metabolites (including homovanillic acid, vanillylmandelic acid, 3,4‐dihydroxymandelic acid, and 3,4‐dihydroxyphenylacetic acid) determination was developed based on thin‐layer chromatography and image‐processing analysis. The metabolites were separated without a prederivatization step using reversed phase RP‐18W high‐performance plates. The mobile phase composition, detection, and quantification conditions were systematically investigated through several trials. The reaction with 2,2‐diphenyl‐1‐picrylhydrazyl radical allowed specific detection of acidic catecholamine metabolites with a high sensitivity and a wide linear range. The limit of detection and the limit of quantification were in the range of 13–103 and 18–120 ng/spot, respectively, in all cases. Mean recoveries determined were in the range 95–106% for all of the investigated compounds. The proposed method allowed rapid simultaneous determination of acidic catecholamine metabolites from spiked human urine sample.  相似文献   

3.
SPE method is a very popular technique, and is commonly used for the prepurification, concentration, and isolation of different organic compounds from variable matrices. In this work, the optimization of SPE process was carried out. The breakthrough volume of solid sorbents based on octadecylsilane was determined and three methods were compared: (1) calculation one – the breakthrough volume was calculated using retention factor k determined with micro‐TLC method, frontal analysis – (2) breakthrough volume was determined as volume of whole elution peak, and (3) breakthrough volume was determined as the center of peak gravity. For calculation method, the k values of key estrogens and progestogens were derived from the micro‐TLC experiment reported previously. By combining these three methods, we can point the start of elution, the maximum concentration of analyte in eluate, and the whole eluent volume, which is necessary to achieve an appropriate selectivity and high extraction recovery. Proposed calculation method allows to estimate the beginning of the steroid peak, when the analyte appears in the eluate flowing from the sorbent. Such observation advances the SPE optimization protocol that was described before and was based on the correlation between raw kSPE and kmicro‐TLC data.  相似文献   

4.
This review is focused on planar chromatography hyphenated with mass‐spectrometric detection for analysis of low‐molecular‐mass solutes. Various kinds of hyphenations are discussed with attention paid to the preparation of thin layer plates suited both for the mass‐spectrometric detection of the resolved solutes direct from thin‐layer plates and for indirect mass‐spectrometric detection of the resolved solutes, performed by scraping, extracting, purifying, and concentrating the analyte from the thin‐layer chromatography plate. Plates with monolithic layers are relatively new for thin‐layer chromatography but they can successfully be combined with mass‐spectrometric technique in a pursuit of comprehensive local sample composition information. Preparation of monolithic layers of different porosity and structure based on organic, inorganic, and composite materials is illustrated together with examples of successful separation and detection of low‐molecular‐mass solutes by means of matrix‐assisted and surface‐assisted laser desorption mass spectrometry.  相似文献   

5.
The combination of sofosbuvir and daclatasvir or sofosbuvir and ledipasvir is now widely used as an ideal treatment for hepatitis C virus infection. For this purpose, a simple, sensitive, accurate, economic, and precise high‐performance thin‐layer chromatography was developed and validated for the determination of sofosbuvir, daclatasvir, and ledipasvir in their pure form as well as their different pharmaceutical products. The method used Merck high‐performance thin‐layer chromatography aluminum plates precoated with silica gel 60 F254 as a stationary phase and mobile phase consisting of methylene chloride/methanol/ethyl acetate/ammonia (25%) (6:1:4:1, v/v/v/v). This system was found to give compact symmetric peaks of sofosbuvir, daclatasvir, and ledipasvir with retardation factors of 0.27 ± 0.01, 0.50 ± 0.007, and 0.68 ± 0.008, respectively. The densitometric scanner was set at 275 nm using a deuterium lamp. The calibration curves were linear over the range of 100–3000 ng/spot for sofosbuvir, and daclatasvir, and range of 50–3000 ng/spot for ledipasvir. The detection limits were 22.5, 31.90, and 15.80 for sofosbuvir, daclatasvir, and ledipasvir. The quantitation limits were 67.50, 95.60, and 47.50 for sofosbuvir, daclatasvir, and ledipasvir. The proposed method was validated according to International Conference on Harmonization (ICH) guidelines and the results were acceptable.  相似文献   

6.
Liquid phase microextraction combined with ion‐exchange‐high performance thin layer chromatography has been developed for analysis of four plasticizers in aqueous samples. After their preconcentration by liquid phase microextraction, fast separation on thin layers of inorganic ion‐exchanger stannic silicate has been developed using a mixture of toluene + ethyl acetate (10:1, v/v) as mobile phase. Consequently, densitometric quantitative determination of the plasticizers has been made at λ = 280 nm in reflection–absorption mode by Camag TLC scanner‐3. The effects of type and volume of extraction solvent, stirring rate, extraction time, and ionic strength in the microextraction method have been also evaluated and optimized. The results show that the proposed method provides enhanced accuracy, linear range, LOD, and LOQ, and is very effective for analyzing the target compounds in water samples. Under the optimized conditions, preconcentration factor of 149–279 and extraction efficiency of 31–59% have been obtained. Repeatability (5.67–7.26%) and intermediate precision (6.21–8.17%) were in acceptable range. The relative recovery obtained for each analyte in different water samples was higher than 82.3% at three fortification levels with RSD <7.9%.  相似文献   

7.
The great prevalence of thin‐layer chromatography over high‐performance liquid chromatography is connected with the possibility of analyzing many samples in parallel. Therefore, the method is often used in screening and/or effect directed analysis to compare composition and chemical/biological properties of many samples in one run. It was already proved, that high performance thin‐layer chromatography, in many cases, can replace high‐performance liquid chromatography for quantitative analysis. The main aim of the paper is to show that simple thin‐layer chromatography can also be used as a quantitative or at least as a semi‐quantitative method, even when it concerns effect directed analysis e.g. direct bioautography. Chlorogenic acid content was measured in four methanol extracts of various green coffees and in one extract of black coffee using thin‐layer chromatography with ultraviolet detection and thin‐layer chromatography with effect directed detection. High‐performance liquid chromatography was used as a reference method. Additionally, total contents of polyphenols and antioxidants were estimated using thin‐layer chromatography or dot‐blot on chromatography plates. These results were compared to spectrophotometric methods. It was proved that thin‐layer chromatography can be used as a quantitative (using densitometry) or semi‐quantitative method (using other detection methods including effect directed detection) as well as for estimating total antioxidants or polyphenols content.  相似文献   

8.
Microfabricated silica thin layer chromatography (TLC) plates have previously been prepared on patterned carbon nanotube forests. The high temperatures used in their fabrication reduce the number of hydroxyl groups on their surfaces. Fortunately, silica can be rehydroxylated. In diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), a silanol peak below 3740 cm?1 indicates a well‐hydroxylated silica surface that is fit for chromatography. Hydroxylations of our materials with HF are so effective that it is not possible to discern the position of this peak. In contrast, this signal is discernable when the plates are treated with NH4OH. To find a more convenient method for studying the surfaces of TLC plates, time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS) was considered. ToF‐SIMS is advantageous because multiple microfabricated TLC plates must be scraped to obtain enough silica for one DRIFT analysis, while static SIMS can be performed on very small regions (500 × 500 µm2 or less) of individual plates. Ratios of the SiOH+ and Si+ ToF‐SIMS signals for microfabricated TLC plates correlated well with ~3740 cm?1 silanol peaks from DRIFT. Thus, SIMS allows direct analysis of all of our treated and untreated plates, including those hydroxylated with HF. The best hydroxylation condition for HF, which was better than any studied for NH4OH, was around 150 ppm at room temperature. The best hydroxylation condition for NH4OH was 50 °C for 72 h. ToF‐SIMS versus DRIFT results of commercial TLC plates were also obtained and evaluated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, an eco‐friendly fast simple method was developed for simultaneous determination of norfloxacin and tinidazole based on thin‐layer chromatography and image‐processing analysis. The binary mixture was separated using reversed phase ‐ thin layer chromatography plates and 30% trifluoroacetic acid only as mobile phase. Mobile phase composition was optimized using Taguchi orthogonal array and Derringer's desirability function. The plates were viewed under UV lamp and photographed by iPhone camera followed by image processing with Fiji software using integrated density as the measured response. As decreasing illumination increases the sensitivity of the method, this method was applied on two different ranges for each drug. The first one was 0.6–6.0 and 0.9–9.0 µg/spot for norfloxacin and tinidazole, respectively measured on the original image with normal illumination. The second one was measured after decreasing the illumination of the captured images at 0.06–0.60 and 0.09–0.90 µg/spot for norfloxacin and tinidazole, respectively. The proposed method was successfully applied for the determination of both drugs in tablets dosage form without interference from the commonly encountered excipients. Analytical Eco‐Scale was used to evaluate the greenness profile of the proposed method and it was found to be excellent green analytical method.  相似文献   

10.
Thin films composed of polycyclohexane (PCHE), zinc(II)‐5,10,15,20‐tetra‐(2‐naphthyl)porphyrin (ZnTNpP), and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends are prepared to investigate their potential for the controlled self‐assembly of a porphyrin/fullerene donor–acceptor complex in a polymer thin film. The compatibilities of PCHE/PCBM (p), PCHE/ZnTNpP (q), and ZnTNpP/PCBM (r) in these blends have a significant effect on the dispersion of the ZnTNpP/PCBM donor–acceptor complex in the PCHE thin film. When the compatibilities are p << q, r, and q ≈ r, the ZnTNpP/PCBM donor–acceptor complex is formed between the PCHE and PCBM phases. This concept to form a controlled self‐assembly of the ZnTNpP/PCBM donor–acceptor complex may be applied to various combinations of porphyrin/fullerene systems in polymer thin film solar cells to achieve excellent performance. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 743–746  相似文献   

11.
Maca is a Peruvian tuberous root of the Brassicaceae family grown in the central Andes between altitudes of 4000 and 4500 m. The medicinal plant is a nutraceutical with important biological activities and health effects. In this study, we report a rapid high‐performance thin layer chromatography (HPTLC)‐(?)desorption electrospray ionization (DESI)‐mass spectrometry (MS) method to profile and separate intact glucosinolates without prior biochemical modifications from the hydromethanolic extracts of two phenotypes, red and black Maca (Lepidium peruvianum) seeds. In the first stage of the plant's life cycle, aromatic glucosinolates were the main chemical constituents whereby six aromatic, three indole, and one aliphatic glucosinolate were tentatively identified. At the seedling stage, glucolepigramin/Glucosinalbin was the most predominant precursor, rather than Glucotropaeolin, which is mainly found in hypocotyls and roots. These findings lead us to suggest that glucolepigramin/glucosinalbin play a major role as active precursors in the biosynthetic pathways of other secondary metabolites in the early stages of plant development. Between red and black Maca seeds, only minor differences in the relative abundances of glucosinolates were observed rather than different plant metabolites. For the first time, we report six potential plant antibiotics, phytoanticipins: glycosylated ascorbigens and dihydroascorbigens from Maca seeds. We also investigated a targeted reverse phase C18 functionalized TLC‐DESI‐MS method with high sensitivity and specificity for Brassicaceae fatty acids in Maca seeds and health supplements such as black Maca root lyophilized powder and tinctures. The investigation of secondary metabolites by normal and reverse phase TLC‐DESI‐MS methods, described in this study, can aid in their identification as they begin to emerge in later stages of development in plant tissues such as leaves, hypocotyls, and roots.  相似文献   

12.
A quick and inexpensive validated method, based on sample treatment by liquid–liquid microextraction followed by liquid chromatography (LC) coupled with ultraviolet tandem fluorescence detection is proposed for the determination of 15 multiclass pollutants both in serum and in saliva, as a simple and easy to draw matrix. The method was set up and validated according to European guidelines. The compounds of interest include some endocrine‐disrupting chemicals (i.e. bisphenol A, bisphenol B, bisphenol E, bisphenol F, bisphenol AF, bisphenol A diglycidyl ether, bisphenol M, diethylhexyl phthalate, monoethylhexyl phthalate, triclosan and 4‐nonylphenol), as well as other pollutants belonging to the class of volatile organic compounds (2‐chlorophenol, 1,2 dichlorobenzene, 1,2,4,5‐tetrachlorobenzene). The limits of quantifications ranged from 2.28 × 10?3 μg mL?1 (bisphenol A diglycidyl ether) to 6.29 μg mL?1 (diethylhexyl phthalate), while those of detection ranged from 0.068 × 10?3 μg mL?1 (bisphenol A diglycidyl ether) to 1.031 μg mL?1 (diethylhexyl phthalate). To test method suitability, it was applied to real saliva and serum samples of healthy human volunteers and was found to meet the demands of the laboratories handling simple and relatively inexpensive equipment for screening oriented at rapid and reliable contamination assessment of a population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号