首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

2.
Generalizations of Boolean elements of a BL‐algebra L are studied. By utilizing the MV‐center MV(L) of L, it is reproved that an element xL is Boolean iff xx * = 1 . L is called semi‐Boolean if for all xL, x * is Boolean. An MV‐algebra L is semi‐Boolean iff L is a Boolean algebra. A BL‐algebra L is semi‐Boolean iff L is an SBL‐algebra. A BL‐algebra L is called hyper‐Archimedean if for all xL, xn is Boolean for some finite n ≥ 1. It is proved that hyper‐Archimedean BL‐algebras are MV‐algebras. The study has application in mathematical fuzzy logics whose Lindenbaum algebras are MV‐algebras or BL‐algebras. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A time‐fractional reaction–diffusion initial‐boundary value problem with periodic boundary condition is considered on Q ? Ω × [0, T] , where Ω is the interval [0, l] . Typical solutions of such problem have a weak singularity at the initial time t = 0. The numerical method of the paper uses a direct discontinuous Galerkin (DDG) finite element method in space on a uniform mesh, with piecewise polynomials of degree k ≥ 2 . In the temporal direction we use the L1 approximation of the Caputo derivative on a suitably graded mesh. We prove that at each time level of the mesh, our L1‐DDG solution is superconvergent of order k + 2 in L2(Ω) to a particular projection of the exact solution. Moreover, the L1‐DDG solution achieves superconvergence of order (k + 2) in a discrete L2(Q) norm computed at the Lobatto points, and order (k + 1) superconvergence in a discrete H1(Q) seminorm at the Gauss points; numerical results show that these estimates are sharp.  相似文献   

4.
We deal with the numerical solution of a scalar nonstationary nonlinear convection‐diffusion equation. We employ a combination of the discontinuous Galerkin finite element (DGFE) method for the space as well as time discretization. The linear diffusive and penalty terms are treated implicitly whereas the nonlinear convective term is treated by a special higher order explicit extrapolation from the previous time step, which leads to the necessity to solve only a linear algebraic problem at each time step. We analyse this scheme and derive a priori asymptotic error estimates in the L(L2) –norm and the L2(H1) –seminorm with respect to the mesh size h and time step τ. Finally, we present an efficient solution strategy and numerical examples verifying the theoretical results. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1456–1482, 2010  相似文献   

5.
This paper is concerned with the exponential stabilization and L2‐gain for a class of uncertain switched nonlinear systems with interval time‐varying delay. Based on Lyapunov–Krasovskii functional method, novel delay‐dependent sufficient conditions of exponential stabilization for a class of uncertain switched nonlinear delay systems are developed under an average dwell time scheme. Then, novel criteria to ensure the exponential stabilization with weighted L2‐gain performance for a class of uncertain switched nonlinear delay systems are established. Furthermore, an effective method is proposed for the designing of a stabilizing feedback controller with L2‐gain performance. Finally, some numerical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we study the local discontinuous Galerkin (LDG) methods for two‐dimensional nonlinear second‐order elliptic problems of the type uxx + uyy = f(x, y, u, ux, uy) , in a rectangular region Ω with classical boundary conditions on the boundary of Ω . Convergence properties for the solution and for the auxiliary variable that approximates its gradient are established. More specifically, we use the duality argument to prove that the errors between the LDG solutions and the exact solutions in the L2 norm achieve optimal (p + 1)th order convergence, when tensor product polynomials of degree at most p are used. Moreover, we prove that the gradient of the LDG solution is superclose with order p + 1 toward the gradient of Gauss–Radau projection of the exact solution. The results are valid in two space dimensions on Cartesian meshes using tensor product polynomials of degree p ≥ 1 , and for both mixed Dirichlet–Neumann and periodic boundary conditions. Preliminary numerical experiments indicate that our theoretical findings are optimal.  相似文献   

7.
In this article, we conduct an a posteriori error analysis of the two‐dimensional time‐dependent Stokes problem with homogeneous Dirichlet boundary conditions, which can be extended to mixed boundary conditions. We present a full time–space discretization using the discontinuous Galerkin method with polynomials of any degree in time and the ? 2 ? ?1 Taylor–Hood finite elements in space, and propose an a posteriori residual‐type error estimator. The upper bounds involve residuals, which are global in space and local in time, and an L 2‐error term evaluated on the left‐end point of time step. From the error estimate, we compute local error indicators to develop an adaptive space/time mesh refinement strategy. Numerical experiments verify our theoretical results and the proposed adaptive strategy.  相似文献   

8.
We consider the Cauchy problem in R n for strongly damped Klein‐Gordon equations. We derive asymptotic profiles of solutions with weighted L1,1( R n) initial data by a simple method introduced by the second author. Furthermore, from the obtained asymptotic profile, we get the optimal decay order of the L2‐norm of solutions. The obtained results show that the wave effect will be relatively weak because of the mass term, especially in the low‐dimensional case (n = 1,2) as compared with the strongly damped wave equations without mass term (m = 0), so the most interesting topic in this paper is the n = 1,2 cases to compare the difference.  相似文献   

9.
In this article we analyze the L2 least‐squares finite element approximations to the incompressible inviscid rotational flow problem, which is recast into the velocity‐vorticity‐pressure formulation. The least‐squares functional is defined in terms of the sum of the squared L2 norms of the residual equations over a suitable product function space. We first derive a coercivity type a priori estimate for the first‐order system problem that will play the crucial role in the error analysis. We then show that the method exhibits an optimal rate of convergence in the H1 norm for velocity and pressure and a suboptimal rate of convergence in the L2 norm for vorticity. A numerical example in two dimensions is presented, which confirms the theoretical error estimates. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

10.
A gradient flow‐based explicit finite element method (L2GF) for reconstructing the 3D density function from a set of 2D electron micrographs has been proposed in recently published papers. The experimental results showed that the proposed method was superior to the other classical algorithms, especially for the highly noisy data. However, convergence analysis of the L2GF method has not been conducted. In this paper, we present a complete analysis on the convergence of L2GF method for the case of using a more general form regularization term, which includes the Tikhonov‐type regularizer and modified or smoothed total variation regularizer as two special cases. We further prove that the L2‐gradient flow method is stable and robust. These results demonstrate that the iterative variational reconstruction method derived from the L2‐gradient flow approach is mathematically sound and effective and has desirable properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this article, the generalized Rosenau–KdV equation is split into two subequations such that one is linear and the other is nonlinear. The resulting subequations with the prescribed initial and boundary conditions are numerically solved by the first order Lie–Trotter and the second‐order Strang time‐splitting techniques combined with the quintic B‐spline collocation by the help of the fourth order Runge–Kutta (RK‐4) method. To show the accuracy and reliability of the proposed techniques, two test problems having exact solutions are considered. The computed error norms L2 and L with the conservative properties of the discrete mass Q(t) and energy E(t) are compared with those available in the literature. The convergence orders of both techniques have also been calculated. Moreover, the stability analyses of the numerical schemes are investigated.  相似文献   

12.
The aim of this paper was to derive new identities and relations associated with the q‐Bernstein polynomials, q‐Frobenius–Euler polynomials, l‐functions, and q‐Stirling numbers of the second kind. We also give some applications related to theses polynomials and numbers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
《Mathematische Nachrichten》2018,291(11-12):1859-1892
This paper is a continuation of our recent paper 8 . We will consider the semi‐linear Cauchy problem for wave models with scale‐invariant time‐dependent mass and dissipation and power non‐linearity. The goal is to study the interplay between the coefficients of the mass and the dissipation term to prove global existence (in time) of small data energy solutions assuming suitable regularity on the L2 scale with additional L1 regularity for the data. In order to deal with this L2 regularity in the non‐linear part, we will develop and employ some tools from Harmonic Analysis.  相似文献   

14.
Fast algorithms, based on the unsymmetric look‐ahead Lanczos and the Arnoldi process, are developed for the estimation of the functional Φ(?)= u T?(A) v for fixed u , v and A, where A∈??n×n is a large‐scale unsymmetric matrix. Numerical results are presented which validate the comparable accuracy of both approaches. Although the Arnoldi process reaches convergence more quickly in some cases, it has greater memory requirements, and may not be suitable for especially large applications. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The technique that was used to build the eigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similar to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window of the BiCG residuals while simultaneously solving a linear system with that matrix. For a system with multiple right‐hand sides, we give an algorithm that computes incrementally more eigenvalues while solving the first few systems and then uses the computed eigenvectors to deflate BiCGStab for the remaining systems. Our experiments on various test problems, including Lattice QCD, show the remarkable ability of eigBiCG to compute spectral approximations with accuracy comparable with that of the unrestarted, nonsymmetric Lanczos. Furthermore, our incremental eigBiCG followed by appropriately restarted and deflated BiCGStab provides a competitive method for systems with multiple right‐hand sides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A modified backward difference time discretization is presented for Galerkin approximations for nonlinear hyperbolic equation in two space variables. This procedure uses a local approximation of the coefficients based on patches of finite elements with these procedures, a multidimensional problem can be solved as a series of one‐dimensional problems. Optimal order H01 and L2 error estimates are derived. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

17.
A (k;g)‐cage is a k‐regular graph with girth g and with the least possible number of vertices. In this paper, we prove that (k;g)‐cages are k‐edge‐connected if g is even. Earlier, Wang, Xu, and Wang proved that (k;g)‐cages are k‐edge‐connected if g is odd. Combining our results, we conclude that the (k;g)‐cages are k‐edge‐connected. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 219–227, 2005  相似文献   

18.
The r‐Laplacian has played an important role in the development of computationally efficient models for applications, such as numerical simulation of turbulent flows. In this article, we examine two‐level finite element approximation schemes applied to the Navier‐Stokes equations with r‐Laplacian subgridscale viscosity, where r is the order of the power‐law artificial viscosity term. In the two‐level algorithm, the solution to the fully nonlinear coarse mesh problem is utilized in a single‐step linear fine mesh problem. When modeling parameters are chosen appropriately, the error in the two‐level algorithm is comparable to the error in solving the fully nonlinear problem on the fine mesh. We provide rigorous numerical analysis of the two‐level approximation scheme and derive scalings which vary based on the coefficient r, coarse mesh size H, fine mesh size h, and filter radius δ. We also investigate the two‐level algorithm in several computational settings, including the 3D numerical simulation of flow past a backward‐facing step at Reynolds number Re = 5100. In all numerical tests, the two‐level algorithm was proven to achieve the same order of accuracy as the standard one‐level algorithm, at a fraction of the computational cost. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

19.
We construct the minimal and maximal extensions in L p (?n ), 1 < p < ∞, for M ‐elliptic pseudo‐differential operators initiated by Garello and Morando. We prove that they are equal and determine the domains of the minimal, and hence maximal, extensions of M ‐elliptic pseudo‐differential operators. For M ‐elliptic pseudodifferential operators with constant coefficients, the spectra and essential spectra are computed. An application to quantization is given. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
For an integer l > 1, the l‐edge‐connectivity of a connected graph with at least l vertices is the smallest number of edges whose removal results in a graph with l components. A connected graph G is (k, l)‐edge‐connected if the l‐edge‐connectivity of G is at least k. In this paper, we present a structural characterization of minimally (k, k)‐edge‐connected graphs. As a result, former characterizations of minimally (2, 2)‐edge‐connected graphs in [J of Graph Theory 3 (1979), 15–22] are extended. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 116–131, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号