首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
A series of Mg‐Zr mixed oxides with different nominal Mg/ (Mg+Zr) atomic ratios, namely 0, 0.1, 0.2, 0.4, 0.85, and 1, is prepared by alcogel methodology and fundamental insights into the phases obtained and resulting active sites are studied. Characterization is performed by X‐ray diffraction, transmission electron microscopy, X‐ray photoelectron spectroscopy, N2 adsorption–desorption isotherms, and thermal and chemical analysis. Cubic MgxZr1?xO2?x solid solution, which results from the dissolution of Mg2+ cations within the cubic ZrO2 structure, is the main phase detected for the solids with theoretical Mg/ (Mg+Zr) atomic ratio ≤0.4. In contrast, the cubic periclase (c‐MgO) phase derived from hydroxynitrates or hydroxy precursors predominates in the solid with Mg/(Mg+Zr)=0.85. c‐MgO is also incipiently detected in samples with Mg/(Mg+Zr)=0.2 and 0.4, but in these solids the c‐MgO phase mostly arises from the segregation of Mg atoms out of the alcogel‐derived c‐MgxZr1?xO2?x phase during the calcination process, and therefore the species c‐MgO and c‐MgxZr1?xO2?x are in close contact. Regarding the intrinsic activity in furfural–acetone aldol condensation in the aqueous phase, these Mg? O? Zr sites located at the interface between c‐MgxZr1?xO2?x and segregated c‐MgO display a much larger intrinsic activity than the other noninterface sites that are present in these catalysts: Mg? O? Mg sites on c‐MgO and Mg? O? Zr sites on c‐MgxZr1?xO2?x. The very active Mg? O? Zr sites rapidly deactivate in the furfural–acetone condensation due to the leaching of active phases, deposition of heavy hydrocarbonaceous compounds, and hydration of the c‐MgO phase. Nonetheless, these Mg‐Zr materials with very high specific surface areas would be suitable solid catalysts for other relevant reactions catalyzed by strong basic sites in nonaqueous environments.  相似文献   

2.
HMCM‐22 catalysts modified with La2O3 (5% La) and MgO (≈0.87% Mg) were prepared respectively by impregnation method, and were characterized by scanning electron microscopy, X‐ray diffraction, N2 physical adsorption‐desorption and temperature‐programmed desorption of NH3. The effect of supported metallic oxides (La2O3, MgO) on catalytic performance in xylene isomerization of C8 aromatics (ethylbenzene, m‐xylene and o‐xylene) was investigated in detail. The experimental results showed that 5% La/HMCM‐22 catalyst had higher isomerization activity and stronger shape‐selectivity than 0.87% Mg/HMCM‐22 catalyst, owing to its more acid sites and smaller pore size. And the loading amount of La was optimized to be about 7%. Moreover, supporting metal over 7% La/HMCM‐22, respectively with 0.3% Pt, 3% Ni and 3% Mo, was carried out to prepare bifunctional isomerization catalysts. In comparison, 3% Mo/7% La/HMCM‐22 showed the best catalytic performance with both high activity and high selectivity, with the low hydrocracking of m‐xylene and o‐xylene. Besides, the optimal reaction conditions were found: 340°C, 1.5 MPa H2, WHSV 4 h?1 and H2/C8 4 mol/mol. Under the above conditions, ethylbenzene conversion was up to 20%, para‐selectivity was over 23% with low xylene loss of 2.9%.  相似文献   

3.
A series of hydrous zirconia samples were prepared by the hydrothermal method, and the Pt/WO3-ZrO2 catalyst was prepared by impregnation. The effects of hydrothermal temperature of Zr(OH)4 on the isomerization activity of the catalyst was investigated. The crystalline structure, acidity, and reduction properties of the catalyst were characterized by X-ray diffraction, NH3 temperature-programmed desorption, and H2 temperature-programmed reduction, respectively. The results indicated that the crystalline structure of hydrous zirconia and the catalyst varied with the hydrothermal temperature, and the increase of hydrothermal temperature reduced the fraction of tetragonal zirconia. Strong acid sites on the catalyst and the isomerization activity increased with the crystallization of Zr(OH)4. It was proposed that the higher isomerization activity may be related to the existence of large numbers of strong acid sites.  相似文献   

4.
The CeO2, CeO2‐ZrO2 and CeO2‐WO3 catalysts were prepared by hydrothermal method and used to the selective catalytic reduction of NOx by NH3. The addition of ZrO2 or WO3 into CeO2 was favorable for pore structure, and then improved the number of active sites. Besides, the introduction of ZrO2 into CeO2 could improve the Lewis acid sites while WO3 could contribute to the generation of Brønsted and Lewis acid sites, which could improve the catalytic performance and N2 selectivity. The CeO2‐WO3 catalyst exhibited optimal catalytic activity with above 90% NOx conversion performance at 220–425 °C and approximately 100% N2 selectivity at 150–425 °C.  相似文献   

5.
Nanoscale iron‐doped zirconia solid‐solution aerogels are prepared via a simple ethanol thermal route using zirconyl nitrate and iron nitrate as starting materials, followed by a supercritical fluid drying process. Structural characteristics are investigated by means of powder X‐ray diffraction (XRD), thermal analyses (TG/DTA), N2 adsorption measurements and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results show that the resulting iron‐doped solid solutions are metastable tetragonal zirconia which exhibit excellent dispersibility and high solubility of iron oxide. Further, when the Fe:(Fe+Zr) ratio x is lower than 0.10, all of the Fe3+ ions can be incorporated into ZrO2 by substituting Zr4+ to form Zr1?xFexOy solid solutions. Moreover, for the first time, an additional hydroxyl group band that is not present in pure ZrO2 is observed by DRIFTS for the Zr(Fe)O2 solid solution. This is direct evidence of Fe3+ ions incorporated into ZrO2. These Zr1?xFexOy solid solutions are excellent catalysts for the solvent‐free aerobic oxidation of n‐hexadecane using air as the oxidant under ambient conditions. The Zr0.8Fe0.2Oy solid‐solution catalyst demonstrates the best catalytic properties, with the conversion of n‐hexadecane reaching 36.2 % with 48 % selectivity for ketones and 24 % selectivity for alcohols and it can be recycled five times without significant loss of activity.  相似文献   

6.
以ZrO(NO32·2H2O为前驱体对多壁碳纳米管(MWCNTs)进行了改性并负载MnOx制备了MnOx/ZrO2/MWCNTs 催化剂. 考察了Zr 对催化剂低温选择性催化还原(SCR)反应活性的影响,并通过多种分析手段对催化剂的结构进行了表征. 结果表明Zr 的添加对催化剂的低温SCR活性具有显著的促进作用,当Zr 负载量为30%时,催化剂活性最佳. X射线衍射(XRD)、拉曼(Raman)光谱、透射电镜(TEM)、N2吸附-脱附的表征结果分析表明,适量的Zr 改性促进了MnOx在载体表面的分散,增强金属氧化物与MWCNTs 之间的作用,也能增加催化剂的比表面积、孔容和孔径. X 射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)和NH3程序升温脱附(NH3-TPD)的分析结果则显示,Zr 能提高催化剂表面化学吸附氧浓度,促进Mn3+转化为Mn4+,从而使催化剂表面的活性位点增多,氧化还原能力增强,同时还提高了催化剂表面酸性位点的数量和强度,促进了NH3的吸附,是MnOx/ZrO2/MWCNTs 催化剂低温SCR活性提高的主要原因.  相似文献   

7.
Homogeneous xSiO2-(1−x)ZrO2 coatings have been prepared onto glass-slides, monocrystalline Si and stainless steel (AISI 304) using sols prepared via acid and basic catalysis. Zirconium tetrabutoxide (TBOZr), zirconium n-propoxide (TPZ), tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used as precursors of zirconia and silica, respectively. The different parameters involved in the synthesis procedure, as molar ratios H2O/alkoxides, NaOH/alkoxides, and sintering temperature have been analysed, correlating the stability and rheological properties of the sols. The evolution and structure of the sols and coatings have been studied by FTIR. Coatings have been prepared by dipping from acid and basic sols. Electrophoretic Deposition (EPD) technique has also been used to prepare coatings onto stainless steel from basic particulate sols in order to increase the critical thickness. A maximum thickness of 0.5 μ m was reached by both dipping and EPD process for 75SiO2: 25 ZrO2 composition. The critical thickness decreases with ZrO2 amount depending strongly of the drying conditions. Si–O–Zr bonds have been identified by FTIR, indicating the existence of mixed network Si–O–Zr in the coatings obtained by the different routes. Crystallisation of ZrO2(t) was only observed at high sintering temperature (900C) by FTIR and confirmed by DRX.  相似文献   

8.
A highly active superacid of 2–4 wt.% Ru-sulfated ZrO2 for the isomerization of butane to isobutane was obtained by exposing RuOx/ZrO2 to 1 N H2SO4 followed by calcining in air at 550°C. The RuOx/ZrO2 was prepared by impregnating zirconium hydroxide with a solution of RuCl3 followed by drying at 300°C. The catalyst was much more active than the superacid of sulfated zirconia, the temperature difference to show the same conversion between both catalysts being more than 145°C.  相似文献   

9.
Selective catalytic reduction (SCR) of NOx with H2 as a reductant is the most promising denitration technology at low temperature. Achieving the conversion of NOx into N2 at ambient temperature not only prolongs the service life of the catalyst, but also provides more freedom for the arrangement of denitration units throughout the flue gas treatment equipment. However, the development of highly efficient, stable, and environmentally benign supported platinum‐based catalysts for H2‐SCR at ambient temperature is still a major challenge. Herein, a 0.5 wt % Pt/ZrO2@C catalyst, which was composed of carbon‐coated octahedral ZrO2 with highly dispersed Pt particles, was prepared by using a new stabilization strategy based on UiO‐66‐NH2 (a zirconium metal–organic framework) as a template. The catalytic performance of this Pt/ZrO2@C in H2‐SCR was tested and confirmed to achieve near 100 % NOx conversion at 90 °C. Also, 70 % N2 selectivity of the catalyst was achieved. The morphology, structure, and porous properties of the as‐synthesized nanocomposites were characterized by using data obtained from field‐emission SEM, TEM, XRD, Raman spectroscopy, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and N2 adsorption–desorption isotherms. The results show that residual carbon formed by pyrolysis treatment is coated on octahedral ZrO2, and effectively prevents the agglomeration of platinum particles on the surface.  相似文献   

10.
张骞  张因  李海涛  赵永祥  马萌  郁宇 《催化学报》2013,34(6):1159-1166
采用浸渍法制备了碱土金属氧化物CaO,SrO或BaO改性的ZrO2酸碱双功能催化剂,借助X射线衍射、低温N2物理吸附、NH3和CO2程序升温脱附等手段表征了催化剂的结构、织构以及表面酸碱性质,并考察了其催化1,4-丁二醇选择性脱水合成3-丁烯-1-醇的反应性能.结果表明,碱土金属氧化物的引入显著调变了催化剂表面的酸性和碱性中心,进而对1,4-丁二醇转化率和3-丁烯-1-醇选择性产生重要影响.其中,CaO改性的ZrO2样品中形成了大量的Ca-O-Zr结构,在ZrO2表面形成大量碱性位点的同时,保持了较高的酸密度;而SrO和BaO改性的样品中生成了相应的锆酸盐,ZrO2表面的酸密度呈现不同程度的下降.因此,CaO/ZrO2催化剂表现出最优的催化活性和3-丁烯-1-醇选择性,350℃时,3-丁烯-1-醇收率最高,达60.5%.催化剂表面的酸碱协同作用是选择性合成3-丁烯-1-醇的关键因素.  相似文献   

11.
Non‐oxidative dehydrogenation of propane to propene is an established large‐scale process that, however, faces challenges, particularly in catalyst development; these are the toxicity of chromium compounds, high cost of platinum, and catalyst durability. Herein, we describe the design of unconventional catalysts based on bulk materials with a certain defect structure, for example, ZrO2 promoted with other metal oxides. Comprehensive characterization supports the hypothesis that coordinatively unsaturated Zr cations are the active sites for propane dehydrogenation. Their concentration can be adjusted by varying the kind of ZrO2 promoter and/or supporting tiny amounts of hydrogenation‐active metal. Accordingly designed Cu(0.05 wt %)/ZrO2‐La2O3 showed industrially relevant activity and durability over ca. 240 h on stream in a series of 60 dehydrogenation and oxidative regeneration cycles between 550 and 625 °C.  相似文献   

12.
A heterogeneous catalyst was prepared by immobilizing Zirconyl Schiff base complex on the modified MCM-41 and used in the conversion of fructose to HMF. A higher HMF yield was obtained when fructose as raw material under optimal reaction conditions.  相似文献   

13.
Ceria–zirconia mixed oxide was successfully synthesized via the sol–gel process at ambient temperature, followed by calcination at 500, 700 and 900 °C. The synthesis parameters, such as alkoxide concentration, aging time and heating temperature, were studied to obtain the most uniform and remarkably high‐surface‐area cubic‐phase mixed oxides. The thermal stability of both oxides was enhanced by mutual substitution. Surface areas of the CexZr1?xO2 powders were improved by increasing ceria content, and their thermal stability was increased by the incorporation of ZrO2. The most stable cubic‐phase solid solutions were obtained in the Ce range above 50 mol%. The highest surface area was obtained from the mixed catalyst containing a ceria content of 90 mol% (200 m2/g). Temperature programmed reduction results show that increasing the amount of Zr in the mixed oxides results in a decrease in the reduction temperature, and that the splitting of the support reduction process into two peaks depends on CeO2 content. The CO oxidation activity of samples was found to be related to its composition. The activity of catalysts for this reaction decreased with a decrease in Zr amount in cubic phase catalysts. Ce6Zr4O2 exhibited the highest activity for CO oxidation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
A series of sulfated mixed oxides of alumina and zirconia having a relative composition of 5% and 10% of ZrO2 was prepared by means of sol-gel methods using zirconium propoxide or zirconium acetylacetone as precursor. The characterization of the physicochemical properties was carried out using 27Al NMR, XRD, N2 adsorption at 77 K, thermogravimetry, FTIR analysis of adsorbed pyridine, 27Al NMR-MAS and XPS. The catalytic properties were studied by means of isomerization of n-hexane at 250°C. Results obtained allowed to propose that the use of Zr(acac)4 as a zirconium precursor leads to a better retention of sulfate species which seems to form polymeric superficial sites. The symmetry of aluminium undergo an increase from tetrahedral to octahedral coordination and Zirconium atoms seems to be located in the second coordination sphere of Al. XRD analysis indicated an amorphous structure of obtained solids calcined at 650°C. The sulfated solids presented both Lewis and Brönsted acidic sites. Catalytic results showed that both activity and selectivity towards isomerization products were better using Zr (acac)4 as precursor. Furthermore, the increase of the Zr loading affected considerably the catalytic properties of sulfated zirconia supported by alumina.  相似文献   

15.
Layered hydroxides with a molar ratio of metals Mg: Al: M = 3: 1: 1 (M = Fe, Ce, Zr, Cr) were prepared and served as a basis to obtain the mixed oxides MgAlOx, MgAlCrOx, MgAlCeOx, MgAlZrOx, and MgAlCrOx. Powder X-ray diffraction was used to study the phase composition of the oxides. It was suggested that the catalyst active surface is related to the presence of spineltype X-ray amorphous compounds. Ammonia adsorption was used to determine the total acidity, and deuterated acetonitrile adsorption was applied to estimate the strength of acid sites. The catalytic properties of complex oxides were studied in the ethanol condensation reaction. An attempt was made to correlate the catalyst activity and selectivity and the distribution of acid and base sites on the catalyst surface.  相似文献   

16.
We studied on the function of the metal in the sulfated zirconia(SO42–/ZrO2) catalyst for the isomerization reaction of light paraffins. The addition of Pt to the SO42–/ZrO2 carrier could keep the high catalytic activity. The improvement in this isomerization activity is because Pt promotes removal of the coke precursor deposited on the catalyst surface. Though this catalytic function was observed in other transition metals, such as Pd, Ru, Ni, Rh and W, Pt exhibited the highest effect among them. It was further found that the Pd/SO42–/ZrO2–Al2O3 catalyst possessed a catalytic function for desulfurization of sulfur-containing light naphtha in addition to the skeletal isomerization. The sulfur tolerance of catalyst depended on the method of adding Pd, and the catalyst prepared by impregnation of the SO42–/ZrO2–Al2O3 with an aqueous solution of Pd exhibited the highest sulfur tolerance.Further, we investigated the improvement in sulfur tolerance of the Pt/SO42–/ZrO2–Al2O3 catalyst by impregnation of Pd. The results of EPMA analysis indicated that this catalyst was a hybrid-type one (Pt/SO42–/ZrO2–Pd/Al2O3) in which Pt/SO42–/ZrO2 particles and Pd/Al2O3 particles adjoined closely. This hybrid catalyst possessed a very high sulfur tolerance to the raw light naphtha that was obtained from the atmospheric distillation apparatus, although this light naphtha contained much sulfur. We assume that such a high sulfur tolerance in the hybrid catalyst is brought about by the isomerization function of Pt/SO42–/ZrO2 particles and the hydrodesulfurization function of Pd/Al2O3 particles. Besides, since the hybrid catalyst also provides high catalytic activity in the isomerization of HDS light naphtha, we suggest that the Pd/Al2O3 particles supply atomic hydrogen to the Pt/SO42–/ZrO2 particles by homolytic dissociation of gaseous hydrogen and also enhance the sulfur tolerance of Pt/SO42–/ZrO2 particles. Finally, we also propose the most suitable location of Pd and Pt in the metal-supported SO42–/ZrO2–Al2O3 catalyst.  相似文献   

17.
Hydrous zirconia supported ruthenium catalyst Ru/ZrO2·xH2O, prepared by co‐precipitating ruthenium trichloride and zirconium oxychloride with ammonia, was able to catalyze efficiently methyl propionate to propanol under the mild conditions. In aqueous system, the propanol yield of >99% was achieved under the conditions of reaction temperature of 150°C and hydrogen pressure of 5.0 MPa, while in non‐aqueous system the maximum propanol yield was only 47.0%. FTIR spectra and hydrogenation results indicated that the high catalytic performance of Ru/ZrO2·xH2O in aqueous phase results from the cooperation effect between water as a solvent and hydroxyl groups on the surface of carrier.  相似文献   

18.
The Pd, AuPd, and ZrO2 nanoparticle–decorated functionalised multiwalled carbon nanotubes (f‐MWCNTs) were reported as efficient catalysts of formic acid (FA) electro‐oxidation. Different preparation conditions influence their chemical and structural properties analysed by X‐ray photoelectron spectroscopy aided with the quantitative analysis of surfaces by electron spectroscopy. Different reduction procedures such as NaBH4, a polyol microwave‐assisted method (PMWA), and a high pressure microwave reactor (HPMWR) were applied for decorating ZrO2/f‐MWCNTs with Pd and AuPd nanoparticles. The ZrO2 nanoparticles are attached through oxygen groups to the surface of f‐MWCNTs. In NaBH4 and HPMWR procedures, Pd nanoparticles precipitate predominantly on ZrO2 of nearly nominal stoichiometry, whereas in PMWA procedure, Pd and AuPd nanoparticles precipitate predominantly on the surface of f‐MWCNTs, bridging with oxygen groups and ZrOx (x < 2) and leading to Pd‐O‐Zr phase formation. Strong reducing procedures (NaBH4 and FA) led to smaller Pd nanoparticle size, Pd oxide content, and PdOx overlayer thickness in contrary to weak reduction procedures (HPMWR and PMWA). The highest content of Pd‐O‐Zr phase appeared for Pd predominant precipitation on ZrO2 nanoparticles (HPMWR) in contrary to Pd and AuPd predominant precipitation on surface of f‐MWCNTs (NaBH4 ~ FA > PMWA). Larger content of Pd‐O‐Zr phase in AuPd‐decorated ZrO2/f‐MWCNTs in contrary to Pd‐decorated sample (PMWA) could be justified by different electronic properties of nanoparticles. The FA treatment of Pd and AuPd‐ZrO2/f‐MWCNTs samples provided decreasing Pd oxide content, overlayer thickness, nanoparticle size, increasing nanoparticle surface coverage and density, amount of Pd‐O‐Zr, what results from reduction of oxygen groups bridging with Pd and ZrOx nanoparticles, also through Pd‐O‐Zr phase.  相似文献   

19.
An environmentally benign method for O‐tert‐Boc protection of alcohols and phenols catalyzed by MgO–ZrO2 nanoparticles under solvent‐free conditions is described. A variety of phenols, alcohols (aliphatic and aromatic) were converted to corresponding O‐tert‐Boc products in good to excellent yield (50–95%). The present protocol is expedient, simple, and efficient under solvent‐free conditions. The MgO–ZrO2 Nps are easily prepared from inexpensive precursors, and are reusable, recyclable and chemoselective. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The catalytic activity of the thermal decomposition products of Zr(SO4)2 · 4H2O in the reactions of 1-butene isomerization to 2-butenes, isobutanol dehydration, and n-butane skeletal isomerization was studied. Their behaviors in typical acid reactions and in skeletal isomerization were found to be considerably different. In the first two reactions, which occur with the participation of proton sites, the activity of zirconium sulfates was an extremal function of hydrate calcination temperature. Zirconium sulfate calcined at 400–550°C was the most active catalyst. The reasons for such behavior are discussed. In the skeletal isomerization of n-butane, crystalline zirconium sulfate was practically inactive, and it became active only after degradation. The results suggest that the activation of n-butane molecules did not occur at proton sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号