共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wooseup Hwang Jejoong Yoo In‐Chul Hwang Jiyeon Lee Young Ho Ko Hyun Woo Kim Younghoon Kim Yeonsang Lee Moon Young Hur Kyeng Min Park Jongcheol Seo Kangkyun Baek Kimoon Kim 《Angewandte Chemie (International ed. in English)》2020,59(9):3460-3464
Hierarchical self‐assembly of building blocks over multiple length scales is ubiquitous in living organisms. Microtubules are one of the principal cellular components formed by hierarchical self‐assembly of nanometer‐sized tubulin heterodimers into protofilaments, which then associate to form micron‐length‐scale, multi‐stranded tubes. This peculiar biological process is now mimicked with a fully synthetic molecule, which forms a 1:1 host‐guest complex with cucurbit[7]uril as a globular building block, and then polymerizes into linear poly‐pseudorotaxanes that associate laterally with each other in a self‐shape‐complementary manner to form a tubular structure with a length over tens of micrometers. Molecular dynamic simulations suggest that the tubular assembly consists of eight poly‐pseudorotaxanes that wind together to form a 4.5 nm wide multi‐stranded tubule. 相似文献
3.
Dr. Longyu Li Dr. Pengfei Zhang Dr. Zhiyun Zhang Qianming Lin Dr. Yuyang Wu Alexander Cheng Yunxiao Lin Dr. Christina M. Thompson Prof. Dr. Ronald A. Smaldone Prof. Dr. Chenfeng Ke 《Angewandte Chemie (International ed. in English)》2018,57(18):5105-5109
Integrating intelligent molecular systems into 3D printing materials and transforming their molecular functions to the macroscale with controlled superstructures will unleash great potential for the development of smart materials. Compared to macromolecular 3D printing materials, self‐assembled small‐molecule‐based 3D printing materials are very rare owing to the difficulties of facilitating 3D printability as well as preserving their molecular functions macroscopically. Herein, we report a general approach for the integration of functional small molecules into 3D printing materials for direct ink writing through the introduction of a supramolecular template. A variety of inorganic and organic small‐molecule‐based inks were 3D‐printed, and their superstructures were refined by post‐printing hierarchical co‐assembly. Through spatial and temporal control of individual molecular events from the nano‐ to the macroscale, fine‐tuned macroscale features were successfully installed in the monoliths. 相似文献
4.
Emulsion‐Assisted Polymerization‐Induced Hierarchical Self‐Assembly of Giant Sea Urchin‐like Aggregates on a Large Scale 下载免费PDF全文
Dr. Qingsong Xu Tong Huang Shanlong Li Ke Li Chuanlong Li Yannan Liu Yuling Wang Chunyang Yu Prof. Dr. Yongfeng Zhou 《Angewandte Chemie (International ed. in English)》2018,57(27):8043-8047
Hierarchical solution self‐assembly has become an important biomimetic method to prepare highly complex and multifunctional supramolecular structures. However, despite great progress, it is still highly challenging to prepare hierarchical self‐assemblies on a large scale because the self‐assembly processes are generally performed at high dilution. Now, an emulsion‐assisted polymerization‐induced self‐assembly (EAPISA) method with the advantages of in situ self‐assembly, scalable preparation, and facile functionalization was used to prepare hierarchical multiscale sea urchin‐like aggregates (SUAs). The obtained SUAs from amphiphilic alternating copolymers have a micrometer‐sized rattan ball‐like capsule (RBC) acting as the hollow core body and radiating nanotubes tens of micrometers in length as the hollow spines. They can capture model proteins effectively at an ultra‐low concentration (ca. 10 nm ) after functionalization with amino groups through click copolymerization. 相似文献
5.
Dr. Christianus M. A. Leenders Gijs Jansen Martijn M. M. Frissen René P. M. Lafleur Dr. Ilja K. Voets Dr. Anja R. A. Palmans Prof. Dr. E. W. Meijer 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(13):4608-4615
We introduce monosaccharides as versatile water‐soluble units to compatibilise supramolecular polymers based on the benzene‐1,3,5‐tricarboxamide (BTA) moiety with water. A library of monosaccharide‐based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α‐glucose, β‐glucose, α‐mannose and α‐galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one‐dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self‐assembly process is operative and that the introduction of different monosaccharides does not significantly change the self‐ assembly behaviour. Finally, we investigate the potential of post‐assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. 相似文献
6.
7.
Steric‐Structure‐Dependent Gel Formation,Hierarchical Structures,Rheological Behavior,and Surface Wettability 下载免费PDF全文
Dr. Xinhua Cao Na Zhao Ruohan Li Dr. Haiting Lv Zongwen Zhang Aiping Gao Prof. Dr. Tao Yi 《化学:亚洲杂志》2016,11(22):3196-3204
A series of bicholesteryl‐based gelators with different central linker atoms C, N, and O (abbreviated to GC , GN , and GO , respectively) have been designed and synthesized. The self‐assembly processes of these gelators were investigated by using gelation tests, field‐emission scanning electron microscopy, field‐emission transmission electron microscopy, UV/Vis absorption, IR spectroscopy, X‐ray diffraction, rheology, and contact‐angle experiments. The gelation ability, self‐assembly morphology, rheological, and surface‐wettability properties of these gelators strongly depend on the central linker atom of the gelator molecule. Specifically, GC and GN can form gels in three different solvents, whereas GO can only form a gel in N,N‐dimethylformamide (DMF). Morphologies from nanofibers and nanosheets to nanospheres and nanotubes can be obtained with different central atoms. Gels of GC , GN , and GO formed in the same solvent (DMF) have different tolerances to external forces. All xerogels gave a hydrophobic surface with contact angles that ranged from 121 to 152°. Quantum‐chemical calculations indicate that the GC , GN , and GO molecules have very different steric structures. The results demonstrate that the central linker atom can efficiently modulate the molecular steric structure and thus regulate the supramolecular self‐assembly process and properties of gelators. 相似文献
8.
Dr. Daniel Spitzer Dr. Vincent Marichez Georges J. M. Formon Prof. Dr. Pol Besenius Prof. Dr. Thomas M. Hermans 《Angewandte Chemie (International ed. in English)》2018,57(35):11349-11353
Controlling supramolecular growth at solid surfaces is of great importance to expand the scope of supramolecular materials. A dendritic benzene‐1,3,5‐tricarboxamide peptide conjugate is described in which assembly can be triggered by a pH jump. Stopped‐flow kinetics and mathematical modeling provide a quantitative understanding of the nucleation, elongation, and fragmentation behavior in solution. To assemble the molecule at a solid–liquid interface, we use proton diffusion from the bulk. The latter needs to be slower than the lag phase of nucleation to progressively grow a hydrogel outwards from the surface. Our method of surface‐assisted self‐assembly is generally applicable to other gelators, and can be used to create structured supramolecular materials. 相似文献
9.
《Angewandte Chemie (International ed. in English)》2018,57(19):5534-5538
The self‐assembly of eight PdII cations and sixteen phenanthrene‐derived bridging ligands with 60° bite angles yielded a novel M8L16 metallosupramolecular architecture composed of two interlocked D4h‐symmetric barrel‐shaped containers. Mass spectrometry, NMR spectroscopy, and X‐ray analysis revealed this self‐assembled structure to be a very large “Hopf link” catenane featuring channel‐like cavities, which are occupied by NO3− anions. The importance of the anions as catenation templates became imminent when we observed the nitrate‐triggered structural rearrangement of a mixture of M3L6 and M4L8 assemblies formed in the presence of BF4− anions into the same interlocked molecule. Furthermore, the densely packed structure of the M8L16 catenane was exploited in the preparation of a hexyloxy‐functionalized analogue, which further self‐assembled into vesicle‐like aggregates in a reversible manner. 相似文献
10.
Shahad Alsaiari Kholod Alamoudi Dr. Aws Alshamsan Dr. Abdulaziz AlMalik Dr. Karim Adil Prof. Mohamed Eddaoudi Prof. Niveen M. Khashab 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(39):13789-13793
Supramolecular self‐assembly of histidine‐capped‐dialkoxy‐anthracene (HDA) results in the formation of light‐responsive nanostructures. Single‐crystal X‐ray diffraction analysis of HDA shows two types of hydrogen bonding. The first hydrogen bond is established between the imidazole moieties while the second involves the oxygen atom of one amide group and the hydrogen atom of a second amide group. When protonated in acidic aqueous media, HDA successfully complexes siRNA yielding spherical nanostructures. This biocompatible platform controllably delivers siRNA with high efficacy upon visible‐light irradiation leading up to 90 % of gene silencing in live cells. 相似文献
11.
Dr. Liulin Yang Aijie Liu Shuqin Cao Rindia M. Putri Prof. Pascal Jonkheijm Prof. Jeroen J. L. M. Cornelissen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(44):15570-15582
The study of protein self‐assembly has attracted great interest over the decades, due to the important role that proteins play in life. In contrast to the major achievements that have been made in the fields of DNA origami, RNA, and synthetic peptides, methods for the design of self‐assembling proteins have progressed more slowly. This Concept article provides a brief overview of studies on native protein and artificial scaffold assemblies and highlights advances in designing self‐assembling proteins. The discussions are focused on design strategies for self‐assembling proteins, including protein fusion, chemical conjugation, supramolecular, and computational‐aided de novo design. 相似文献
12.
Water‐Regulated Self‐Assembly Structure Transformation and Gelation Behavior Prediction Based on a Hydrazide Derivative 下载免费PDF全文
Herein, we report the water‐regulated supramolecular self‐assembly structure transformation and the predictability of the gelation ability based on an azobenzene derivative bearing a hydrazide group, namely, N‐(3,4,5‐tributoxyphenyl)‐N′‐4‐[(4‐hydroxyphenyl)azophenyl] benzohydrazide (BNB‐t4). The regulation effects are demonstrated in the morphological transformation from spherical to lamellar particles then back to spherical in different solvent ratios of n‐propanol/water. The self‐assembly behavior of BNB‐t4 was characterized by minimum gelation concentration, microstructure, thermal, and mechanical stabilities. From the spectroscopy studies, it is suggested that gel formation of BNB‐t4 is mainly driven by intermolecular hydrogen bonding, accompanied with the contribution from π–π stacking as well as hydrophobic interactions. The successfully established correlation between the self‐assembly behavior and solubility parameters yields a facile way to predict the gelation performance of other molecules in other single or mixed solvents. 相似文献
13.
Yuta Takaki Ryota Ozawa Dr. Takashi Kajitani Prof. Takanori Fukushima Prof. Masaaki Mitsui Prof. Kenji Kobayashi 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(47):16760-16764
Cyclic arylene ethynylene hexamer 1 , composed of alternating 2,7‐anthrylene ethynylene units and meta‐phenylene ethynylene units, was synthesized. It shows C3 symmetry and possesses a flat and rigid conformation with a large equilateral triangle‐like cavity. Macrocycle 1 self‐associates through π–π stacking interactions between the anthracene‐containing macrocyclic aromatic cores with indefinite‐association constant KE=6980 m ?1 in CDCl3 at 303 K. Macrocycle 1 also self‐assembles into π‐stacked nanofibers in the drop‐cast film. 相似文献
14.
《Angewandte Chemie (International ed. in English)》2017,56(41):12518-12522
The newly developed oligophenylenevinylene (OPV)‐based fluorescent (FL) chiral chemosensor (OPV‐Me) for the representative enantiomeric guest, 1,2‐cyclohexanedicarboxylic acid (1,2‐CHDA: RR ‐ and SS ‐form) showed the high chiral discrimination ability, resulting in the different aggregation modes of OPV‐Me self‐assembly: RR ‐CHDA directed the fibrous supramolecular aggregate, whereas SS ‐CHDA directed the finite aggregate. The consequent FL intensity toward RR ‐CHDA was up to 30 times larger than that toward SS ‐CHDA. Accordingly, highly enantioselective recognition was achieved. Application to the chirality sensing was also possible: OPV‐Me exhibited a linear relationship between the FL intensity and the enantiomeric excess through the morphological development of stereocomplex aggregates. These results clearly show that the chiral recognition ability is manifested by the amplification cascade of the chirality difference through self‐assembly. 相似文献
15.
Young Ho Song Dr. Nem Singh Dr. Jaehoon Jung Dr. Hyunuk Kim Eun‐Hee Kim Dr. Hae‐Kap Cheong Dr. Yousoo Kim Prof. Ki‐Whan Chi 《Angewandte Chemie (International ed. in English)》2016,55(6):2007-2011
A molecular Solomon link was synthesized in high yield through the template‐free, coordination‐driven self‐assembly of a carbazole‐functionalized donor and a tetracene‐based dinuclear ruthenium(II) acceptor. The doubly interlocked topology was realized by a strategically chosen ligand which was capable of participating in multiple CH ??? π and π–π interactions, as evidenced from single‐crystal X‐ray analysis and computational studies. This method is the first example of a two‐component self‐assembly of a molecular Solomon link using a directional bonding approach. The donor alone was not responsible for the construction of the Solomon link, and was confirmed by its noncatenane self‐assemblies obtained with other similar ruthenium(II) acceptors. 相似文献
16.
《化学:亚洲杂志》2017,12(19):2549-2553
The design of tunable dynamic self‐assembly of nanoparticles with switchable assembled dimensions and morphologies is a challenging goal whose realization is vital for the evolution of smart nanomaterials. Herein, we report on chitosan polymer as an effective supramolecular “glue” for aldehyde‐modified Au nanoparticles to reversibly modulate the states of self‐assembled nanocomposites. By simultaneous integration of dynamic covalent Schiff base interactions and noncovalent hydrogen bonds, the chitosan/Au nanocomposites could reversibly transform their assembled morphologies from one‐dimensional nanowires to three‐dimensional nanosponges in response to the variation of pH value. Moreover, the obtained nanosponges could be used as an efficient pH‐controlled cargo release system. 相似文献
17.
Dong Hwan Kim Dr. Nem Singh Jihun Oh Eun‐Hee Kim Dr. Jaehoon Jung Dr. Hyunuk Kim Prof. Ki‐Whan Chi 《Angewandte Chemie (International ed. in English)》2018,57(20):5669-5673
Molecular knots have become highly attractive to chemists because of their prospective properties in mimicking biomolecules and machines. Only a few examples of molecular knots from the billions tabulated by mathematicians have been realized and molecular knots with more than eight crossings have not been reported to date. We report here the coordination‐driven [8+8] self‐assembly of a higher‐generation molecular knot comprising as many as sixteen crossings. Its solid‐state X‐ray crystal structure and multinuclear 2D NMR findings confirmed its architecture and topology. The formation of this molecular knot appears to depend on the functionalities and geometries of donor and acceptor in terms of generating appropriate angles and strong π‐π interactions supported by hydrophobic effects. This study shows coordination‐driven self‐assembly offers a powerful potential means of synthesizing more and more complicated molecular knots and of understanding differences between the properties of knotted and unknotted structures. 相似文献
18.
Bo Jiang Jing Zhang Wei Zheng Li‐Jun Chen Guang‐Qiang Yin Yu‐Xuan Wang Bin Sun Prof. Dr. Xiaopeng Li Prof. Dr. Hai‐Bo Yang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(41):14664-14671
A family of new alkynylplatinum(II) 2,6‐bis(benzimidazol‐2′‐yl)pyridine (bzimpy)‐functionalized supramolecular metallacycles with different shapes and sizes have been successfully prepared by coordination‐driven self‐assembly. The obtained metallacycles showed switchable emission and a strong tendency to form intermolecular Pt???Pt and π–π stacking interactions in solution that were not displayed by their individual precursors. Further investigation revealed that the existence of the metallacyclic scaffold at the core could facilitate the formation of intermolecular Pt???Pt and π–π stacking interactions of peripheral alkynylplatinum(II) bzimpy units. Moreover, the shapes and sizes of the metallacyclic scaffold have a significant influence on the hierarchical self‐assembly behavior. Among the three metallacycles, hexagonal metallacycle A , with a relatively small size, could spontaneously self‐assemble into an aromatic guest stimuli‐responsive metallogel at room temperature without a heating–cooling process. 相似文献
19.
Dr. Yasuyuki Yamada Prof. Dr. Tatsuhisa Kato Prof. Dr. Kentaro Tanaka 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(35):12371-12380
A stacked assembly composed of a porphyrin and two phthalocyanines was prepared through fourfold rotaxane formation. Two phthalocyanine molecules, bearing four 24‐crown‐8 units, were assembled onto a porphyrin template incorporating four sidechains with two dialkylammonium ions each through pseudorotaxane formation between crown ether units and ammonium ions. The Staudinger phosphite reaction, as the stoppering reaction, resulted in the formation of the stacked heterotrimer composed of a porphyrin and two phthalocyanines connected through a fourfold rotaxane structure. UV/Vis spectroscopic and electrochemical studies of the heterotrimer indicated that there is a significant electronic interaction between the two phthalocyanine units due to the close stacking. The electrochemical oxidation process of the stacked heterotrimer was studied by cyclic voltammetry and spectroelectrochemistry. Electron paramagnetic resonance (EPR) spectroscopy of a dinuclear CuII complex, in which two CuII phthalocyanines were assembled on a metal‐free porphyrin template, revealed that two CuII phthalocyanines were located within the stacking distance, which resulted in an antiferromagnetic interaction between the two S= spins in the ground state of the Cu2+ ions in the heterotrimer. 相似文献
20.
Jie Wang Zizhao Huang Xiang Ma He Tian 《Angewandte Chemie (International ed. in English)》2020,59(25):9928-9933
Solid‐state materials with efficient room‐temperature phosphorescence (RTP) emissions have found widespread applications in materials science, while liquid or solution‐phase pure organic RTP emission systems has been rarely reported, because of the nonradiative decay and quenchers from the liquid medium. Reported here is the first example of visible‐light‐excited pure organic RTP in aqueous solution by using a supramolecular host‐guest assembly strategy. The unique cucurbit[8]uril‐mediated quaternary stacking structure allows tunable photoluminescence and visible‐light excitation, enabling the fabrication of multicolor hydrogels and cell imaging. The present assembly‐induced emission approach, as a proof of concept, contributes to the construction of novel metal‐free RTP systems with tunable photoluminescence in aqueous solution, providing broad opportunities for further applications in biological imaging, detection, optical sensors, and so forth. 相似文献