首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Controlling the interaction of polarization light with an asymmetric nanostructure such as a metal/semiconductor heterostructure provides opportunities for tuning surface plasmon excitation and near-field spatial distribution. However, light polarization effects on interfacial charge transport and the photocatalysis of plasmonic metal/semiconductor photocatalysts are unclear. Herein, we reveal the polarization dependence of plasmonic charge separation and spatial distribution in Au/TiO2 nanoparticles under 45° incident light illumination at the single-particle level using a combination of photon-irradiated Kelvin probe force microscopy (KPFM) and electromagnetic field simulation. We quantitatively uncover the relationship between the local charge density and polarization angle by investigating the polarization-dependent surface photovoltage (SPV). The plasmon-induced photocatalytic activity is enhanced when the polarization direction is perpendicular to the Au/TiO2 interface.  相似文献   

2.
The oxidation ability of plasmonic photocatalysts, which has its origins in plasmon‐induced charge separation and has not yet been studied quantitatively and systematically, is important for designing practical photocatalytic systems. Oxidation ability was investigated on the basis of surface hydroxylation of Au nanoparticles on TiO2 at various irradiation wavelengths and electrolyte pH values. The reaction proceeds only when the sum of the flat band potential of TiO2 and the irradiated photon energy is close to, or more positive than, the theoretical potential for the reaction.  相似文献   

3.
A simple strategy was used to enhance band emission through the transfer of defect emission from ZnO to Au by using the energy match between the defect emission of ZnO and the surface plasmon absorbance of Au NPs through decorating the surface of ZnO nanoflowers with Au nanoparticles (Au NPs). The ZnO nanostructure, which was comprised of six nanorods that were attached on one side in a flower‐like fashion, was synthesized by using a hydrothermal method. The temperature‐dependent morphology and detailed growth mechanism were studied. The influence of the density of the Au NPs that were deposited onto the surface of ZnO on photoluminescence was investigated to optimize the configuration of the ZnO/Au system in terms of the maximum band emission. The sequential transfer of defect energy from ZnO to Au and electron transfer from excited Au to ZnO was proposed as a possible mechanism for the enhanced band emission.  相似文献   

4.
Nanocomposites of Ag/TiO2 nanowires with enhanced photoelectrochemical performance have been prepared by a facile solvothermal synthesis of TiO2 nanowires and subsequent photoreduction of Ag+ ions to Ag nanoparticles (AgNPs) on the TiO2 nanowires. The as‐prepared nanocomposites exhibited significantly improved cathodic photocurrent responses under visible‐light illumination, which is attributed to the local electric field enhancement of plasmon resonance effect near the TiO2 surface rather than by the direct transfer of charge between the two materials. The visible‐light‐driven photocatalytic performance of these nanocomposites in the degradation of methylene blue dye was also studied, and the observed improvement in photocatalytic activity is associated with the extended light absorption range and efficient charge separation due to surface plasmon resonance effect of AgNPs.  相似文献   

5.
SERS you right: The plasmon heating of gold nanoshells is exploited to yield the local conversion of amorphous TiO2 into anatase on the surface of polymeric colloidal crystals (see scheme). The resulting Au/TiO2 spots are active substrates for surface‐enhanced Raman spectroscopy and allow surface reactions and processes to be followed directly on‐site.

  相似文献   


6.
Photocatalytic overall water splitting has been recognized as a promising approach to convert solar energy into hydrogen. However, most of the photocatalysts suffer from low efficiencies mainly because of poor charge separation. Herein, taking a model semiconductor gallium nitride (GaN) as an example, we uncovered that photogenerated electrons and holes can be spatially separated to the nonpolar and polar surfaces of GaN nanorod arrays, which is presumably ascribed to the different surface band bending induced by the surface polarity. The photogenerated charge separation efficiency of GaN can be enhanced significantly from about 8 % to more than 80 % via co‐exposing polar and nonpolar surfaces. Furthermore, spatially assembling reduction and oxidation cocatalysts on the nonpolar and polar surfaces remarkably boosts photocatalytic overall water splitting, with the quantum efficiency increased from 0.9 % for the film photocatalyst to 6.9 % for the nanorod arrays photocatalyst.  相似文献   

7.
Reversed photoresponse: Indium tin oxide (ITO)/Au nanoparticle (NP)/TiO2 electrodes (see picture) exhibit cathodic photocurrents and positive photopotentials under visible light, whereas ITO/TiO2/Au NP electrodes show an inverted response. This behavior indicates that electron transfer occurs from the plasmon‐excited Au NPs to the TiO2 film. An enhanced O2 photoreduction activity is found for ITO/Au NP/TiO2/Pt electrodes.

  相似文献   


8.
As a typical photocatalyst for CO2 reduction, practical applications of TiO2 still suffer from low photocatalytic efficiency and limited visible‐light absorption. Herein, a novel Au‐nanoparticle (NP)‐decorated ordered mesoporous TiO2 (OMT) composite (OMT‐Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO2 shows high photocatalytic performance for CO2 reduction under visible light. The ordered mesoporous TiO2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three‐dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO2 reduction under visible light by constructing OMT‐based Au‐SPR‐induced photocatalysts.  相似文献   

9.
The first observation of strong directional surface‐plasmon‐coupled emission (SPCE) of Rhodamine 110 in silica nanofilms deposited on silver nanolayers is reported. The preparation of the material is described in detail. The intensity of SPCE exceeds 10 times that of free space fluorescence and total linear light polarization in the SPCE ring is observed. A new experimental setup and an original data collection method is presented. Our material completely preserves its fluorescence properties for at least eight months.  相似文献   

10.
A new and simple procedure to enhance the fluorescence of analytes on the surfaces of a solid substrate is demonstrated based on Ag@SiO2 nanoparticles. Two kinds of silver–silica core–shell nanoparticles with shell thicknesses of around 3 and 15 nm have been prepared and used as enhancing agents, respectively. By simply pipetting drops of the enhancing agents onto substrate surfaces with Rose Bengal monolayers, an enhancement of about 27 times, compared with the control sample, is achieved by using the Ag@SiO2 nanoparticles with shells of about 3 nm, whereas an enhancement of around 11.7 times is obtained when using those with thicker shells. The effects of shell thickness and surface density of the enhancing agents on the enhancement have been investigated experimentally. The results show that this method can be potentially helpful in fluorescence‐based surface analysis.  相似文献   

11.
The synthesis of noble metal/semiconductor hybrid nanostructures for enhanced catalytic or superior optical properties has attracted a lot of attention in recent years. In this study, a facile and all‐solution‐processed synthetic route was employed to demonstrate an Au/ZnO platform with plasmonic‐enhanced UV/Vis catalytic properties while retaining strengthened luminescent properties. The visible‐light response of photocatalysis is supported by localized surface plasmon resonance (LSPR) excitations while the enhanced performance under UV is aided by charge separation and strong absorption. The enhancement in optical properties is mainly due to local field enhancement effect and coupling between exciton and LSPR. Luminescent characteristics are investigated and discussed in detail. Recyclability tests showed that the Au/ZnO substrate is reusable by cleaning and has a long shelf life. Our result suggests that plasmonic enhancement of photocatalytic performance is not necessarily a trade‐off for enhanced near‐band‐edge emission in Au/ZnO. This approach may give rise to a new class of versatile platforms for use in novel multifunctional and integrated devices.  相似文献   

12.
13.
A key to realizing the sustainable society is to develop highly active photocatalysts for selective organic synthesis effectively using sunlight as the energy source. Recently, metal‐oxide‐supported gold nanoparticles (NPs) have emerged as a new type of visible‐light photocatalysts driven by the excitation of localized surface plasmon resonance of Au NPs. Here we show that visible‐light irradiation (λ>430 nm) of TiO2‐supported Au NPs with a bimodal size distribution (BM‐Au/TiO2) gives rise to the long‐range (>40 nm) electron transport from about 14 small (ca. 2 nm) Au NPs to one large (ca. 9 nm) Au NP through the conduction band of TiO2. As a result of the enhancement of charge separation, BM‐Au/TiO2 exhibits a high level of visible‐light activity for the one‐step synthesis of azobenzenes from nitrobenzenes at 25 °C with a yield greater than 95 % and a selectivity greater than 99 %, whereas unimodal Au/TiO2 (UM‐Au/TiO2) is photocatalytically inactive.  相似文献   

14.
Novel multielement Au/La‐SrTiO3 microspheres were synthesized by a solvothermal method using monodisperse gold and La‐SrTiO3 nanocrystals as building blocks. The porous Au/La‐SrTiO3 microspheres had a large surface area of 94.6 m2 g?1. The stable confined Au nanoparticles demonstrated strong surface plasmon resonance effect, leading to enhanced absorption in a broad UV/Vis/NIR range. Doping of rare‐earth metal La also broadened the absorption band to the visible region. Both the conduction and valence bands of Au/La‐SrTiO3 microspheres thus show favorable potential for proton reduction under visible light. The superimposed effect of Au nanoparticles and La doping in Au/La‐SrTiO3 microspheres led to high photocurrent density in photoelectrochemical water splitting and good photocatalytic activity in photodegradation of rhodamine B. The photocatalytic activities are in the order of the following: Au/La‐SrTiO3 microspheres>Au/SrTiO3 microspheres>La‐SrTiO3 microspheres>SrTiO3 microspheres.  相似文献   

15.
A practical strategy is proposed to facilitate the migration of holes in semiconductor (the low rate of which limits photocatalytic efficiency) by taking advantage of the Schottky barrier between p‐type semiconductor and metal. A high work function is found to serve as an important selection rule for building such desirable Schottky junction between semiconductor surface facets and metal. The intrinsic charge spatial distribution has to be taken into account when selecting the facets, as it results in accumulation of photoexcited electrons and holes on certain semiconductor facets. Importantly, the facets have a high work function, the same characteristic required for the formation of Schottky junction in a p‐type semiconductor–metal hybrid structure. As a result, the semiconductor crystals in the hybrid design may be better enclosed by single facets with high work function, so as to synergize the two effects: Schottky barrier versus charge spatial separation.  相似文献   

16.
An Au/TiO2 nanostructure was constructed to obtain a highly efficient visible‐light‐driven photocatalyst. The design was based on a three‐dimensional ordered assembly of thin‐shell Au/TiO2 hollow nanospheres (Au/TiO2‐3 DHNSs). The designed photocatalysts exhibit not only a very high surface area but also photonic behavior and multiple light scattering, which significantly enhances visible‐light absorption. Thus Au/TiO2‐3 DHNSs exhibit a visible‐light‐driven photocatalytic activity that is several times higher than conventional Au/TiO2 nanopowders.  相似文献   

17.
Imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. Selective oxidation of amines into their corresponding imines with dioxygen is one of the most‐fundamental chemical transformations. Herein, we report the oxidation of a series of benzylic amines into their corresponding imines with atmospheric dioxygen as the oxidant on a surface of anatase TiO2 under visible‐light irradiation (λ>420 nm). The visible‐light response of this system was caused by the formation of a surface complex through the adsorption of a benzylic amine onto the surface of TiO2. From the analysis of products of specially designed benzylic amines, we demonstrated that a highly selective oxygenation reaction proceeds via an oxygen‐transfer mechanism to afford the corresponding carbonyl compound, whose further condensation with an amine would generate the final imine product. We found that when primary benzylic amines (13 examples), were chosen as the substrates, moderate to excellent selectivities for the imine products were achieved (ca. 38–94 %) in moderate to excellent conversion rates (ca. 44–95 %). When secondary benzylic amines (15 examples) were chosen as the substrates, both the corresponding imines and aldehydes were detected as the main products with moderate to high conversion rates (ca. 18–100 %) and lower selectivities for the imine products (ca. 14–69 %). When tribenzylamine was chosen as the substrate, imine (27 %), dibenzylamine (24 %), and benzaldehyde products (39 %) were obtained in a conversion of 50 %. This report can be viewed as a prototypical system for the activation of C? H bonds adjacent to heteroatoms such as N, O, and S atoms, and oxofuctionalization with air or dioxygen as the terminal oxidant under visible‐light irradiation using TiO2 as the photocatalyst.  相似文献   

18.
通过静电纺丝法制备出含有Fe3O4纳米微粒的TiO2纳米纤维,再采用浸渍还原法将Au纳米微粒嵌入到TiO2纳米纤维上,制备出一种具有较强磁性和良好可见光响应能力的复合光催化材料.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外-可见固体漫反射光谱仪(UV-VisDRS)等对样品的结构和形貌进行表征,并以降解罗丹明B(RhB)为模型反应,考察了样品在可见光照射下的光催化性能.结果表明,嵌入Au纳米微粒可使复合纳米纤维在可见光下降解RhB时表现出非常好的降解速率和降解率;同时,将Fe3O4纳米微粒嵌入TiO2纳米纤维内部可以赋予材料较强的磁性,使材料便于分离和重复利用.  相似文献   

19.
Although catalytic processes mediated by surface plasmon resonance (SPR) excitation have emerged as a new frontier in catalysis, the selectivity of these processes remains poorly understood. Here, the selectivity of the SPR‐mediated oxidation of p‐aminothiophenol (PATP) employing Au NPs as catalysts was controlled by the choice of catalysts (Au or TiO2‐Au NPs) and by the modulation of the charge transfer from UV‐excited TiO2 to Au. When Au NPs were employed as catalyst, the SPR‐mediated oxidation of PATP yielded p,p‐dimercaptobenzene (DMAB). When TiO2‐Au NPs were employed as catalysts under both UV illumination and SPR excitation, p‐nitrophenol (PNTP) was formed from PATP in a single step. Interestingly, PNTP molecules were further reduced to DMAB after the UV illumination was removed. Our data show that control over charge‐transfer processes may play an important role to tune activity, product formation, and selectivity in SPR‐mediated catalytic processes.  相似文献   

20.
We report a general route for the direct growth of metal particles on TiO2 nanosheets with (001) exposed facets by an oxygen‐vacancy‐driven self‐redox reaction. As there is no need for thermal treatment to remove stabilizing agents, the structure of the nanoparticles can be retained, preserving the active sites associated with high activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号