首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid, low‐cost, and simple method is proposed based on a miniaturized solid‐phase extraction named microextraction in packed syringe coupled with gas chromatography and mass spectrometry for the preconcentration and determination of some organophosphorous pesticides including diazinon, ethion, and malathion. For the first time, natural nanoperlite is used as a safe sorbent. Based on this technique, the analytes are adsorbed on the solid phase and then eluted by a desorbing solvent. The influence of some important parameters such as the solution pH, type, and volume of the organic desorption solvent on the microextraction efficiency of the selected pesticide technique is investigated. The proposed method showed a good linearity in the range of 1.0–35.0 μg/L for ethion and 0.4–30.0 μg/L for both diazinon and malathion. The limits of detection in the range of 0.1–0.38 μg/L were obtained using the selected ion‐monitoring mode of the mass spectrometer. The reproducibility of the method was found to be in the range of 2.8–8.9% for the studied pesticides. To evaluate the matrix effect, the developed method is also applied to the preconcentration and determination of the selected pesticides in real water samples.  相似文献   

2.
A simple and efficient liquid-phase microextraction technique was developed using ultrasound-assisted emulsification solidified floating organic drop microextraction combined with flame atomic absorption spectrometry, for the extraction and determination of trace amounts of iron and copper in real samples. 2-Mercaptopyridine n-oxide was used as chelating agent and 1-dodecanol was selected as extraction solvent. The factors influencing the complex formation and extraction were optimized. Under optimum conditions, an enrichment factor of ~13 was obtained for both iron and copper from only 6.7 mL of aqueous phase. The analytical curves were linear between 40–800 and 20–1,200 μg L?1 for iron and copper respectively. Based on three SD of the blank, the detection limits were 8.6 and 4.1 μg L?1 for iron and copper respectively. The relative SDs for ten replicate measurements of 500 μg L?1 of metal ions were 2.9 and 1.2 for iron and copper respectively. The proposed method was successfully applied for determination of iron and copper in environmental waters and some food samples including chess, rice, honey and powdered milk. Finally, method validation was made using rock certified reference material. A student’s t test indicated that there was no significant difference between experimental results and certified values.  相似文献   

3.
Metal–organic frameworks are promising materials in diverse analytical applications especially in sample pretreatment by virtue of their diverse structure topology, tunable pore size, permanent nanoscale porosity, high surface area, and good thermostability. According to hydrostability, metal–organic frameworks are divided into moisture‐sensitive and water‐stable types. In the actual applications, both kinds of metal–organic frameworks are usually engineered into hybrid composites containing magnetite, silicon dioxide, graphene, or directly carbonized to metal–organic frameworks derived carbon. These metal–organic frameworks based materials show good extraction performance to environmental pollutants. This review provides a critical overview of the applications of metal–organic frameworks and their composites in sample pretreatment modes, that is, solid‐phase extraction, magnetic solid‐phase extraction, micro‐solid‐phase extraction, solid‐phase microextraction, and stir bar solid extraction.  相似文献   

4.
《Electrophoresis》2017,38(24):3059-3078
In the field of analytical chemistry, sample preparation and chromatographic separation are two core procedures. The means by which to improve the sensitivity, selectivity and detection limit of a method have become a topic of great interest. Recently, porous organic frameworks, such as metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in this research area because of their special features, and different methods have been developed. This review summarizes the applications of MOFs and COFs in sample preparation and chromatographic stationary phases. The MOF‐ or COF‐based solid‐phase extraction (SPE), solid‐phase microextraction (SPME), gas chromatography (GC), high‐performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) methods are described. The excellent properties of MOFs and COFs have resulted in intense interest in exploring their performance and mechanisms for sample preparation and chromatographic separation.  相似文献   

5.
Simple and highly efficient sample preparation procedures, namely, dispersive liquid–liquid microextraction and salting‐out liquid–liquid extraction for the analysis of ten Fusarium mycotoxins and metabolites in human urine were compared. Various parameters affecting extraction efficiency were carefully evaluated. Under optimal extraction conditions, salting‐out liquid–liquid extraction showed a better accuracy (84–96%) and precision (<14%) than dispersive liquid–liquid microextraction. Hence, a multibiomarker method based on salting‐out liquid–liquid extraction followed by gas chromatography with tandem mass spectrometry was proposed. Satisfactory results in terms of validation were achieved. The method resulted in low limits of detection and quantitation within the range of 0.12–4 and 0.25–8 μg/L, respectively. The method accuracy and precision were evaluated at three spiking levels (8, 25 and 100 μg/L) and the recoveries were in a range from 70 to 120% with relative standard deviations lower than 15%. Matrix effect was evaluated and matrix‐matched calibrations were used for quantitation purpose. The developed method was applied in 12 human urine samples as a pilot study before and after sample treatment with β‐glucuronidase before the analysis to quantify the mycotoxin conjugates. Total deoxynivalenol (free + conjugated) was found in 83% of samples at an average concentration in positive samples of 31.6 μg/L.  相似文献   

6.
In the present work, a high‐efficiency and solvent minimized microextraction technique, fabric phase sorptive extraction followed by gas chromatography and mass spectrometry analysis is proposed for the rapid determination of four organophosphorus pesticides (terbufos, malathion, chlorpyrifos, and triazofos) in vegetable samples including beans, tomato, brinjal, and cabbage. Fabric phase sorptive extraction combines the beneficial features of sol‐gel derived microextraction sorbents with the rich surface chemistry of cellulose fabric substrate, which collectively form a highly efficient microextraction system. Fabric phase sorptive extraction membrane, when immersed directly into the sample matrix, may extract target analytes even when high percentage of matrix interferents are present. The technique also greatly simplifies sample preparation workflow. Most important fabric phase sorptive extraction parameters were investigated and optimized. The developed method displayed good linearity over the concentration range 0.5–500 ng/g. Under optimum experimental conditions, the limits of detection were found in the range of 0.033 to 0.136 ng/g. The relative standard deviations for the extraction of organophosphorus pesticides were < 5%. Subsequently, the new method was applied to beans, tomato, brinjal, and cabbage samples. The results from the real sample analysis indicate that the method is green, rapid, and economically feasible for the determination of organophosphorus pesticides in vegetable samples.  相似文献   

7.
A carbon paste electrode modified with 2‐aminothiazole functionalized poly(glycidylmethacrylate‐methylmethacrylate‐divinylbenzene) microspheres was used for trace determination of mercury, copper and lead ions. After the open‐circuit accumulation of the heavy metal ions onto the electrode, the sensitive anodic stripping peaks were obtained by square wave anodic stripping voltammetry (SWASV)). Many parameters such as the composition of the paste, pH, preconcentration time, effective potential scan rate and stirring rate influence the response of the measurement. The procedures were optimized for most sensitive and reliable determinations of the desired species. For a 10‐min preconcentration time in synthetic solutions at optimum instrumental and experimental conditions, the detection limit (LOD) was 12.3, 2.8 and 4.5 μg L?1 for mercury, copper and lead, respectively. The limits of detection may be enhanced by increasing the preconcentration time. For example, LOD of mercury and copper was 4.9 and 1.0 μg L?1 for fifteen minutes preconcentration time. The sensitivity may also considered to be increased by using a more suitable electrode composition targeting the more conductive electrode with lesser amount of modified polymer for sub‐μg L?1 levels of heavy metal ions. The optimized method was successfully applied to the determination of copper in tap water and waste water samples by means of standard addition procedure. The copper content found was comparable with the certified concentration of the waste water sample. The calibration plots for mercury and lead spiked real samples were also drawn.  相似文献   

8.
Heterostructural metal/metal oxides are the very promising substituents of noble‐metal catalysts; however, generation and further stabilization of accessible metal/metal oxide heterojunctions are very difficult. A strategy to encapsulate and stabilize Cu/Cu2O nanojunctions in porous organic frameworks in situ is developed by tuning the acrylate contents in copper‐based metal–organic frameworks (Cu‐MOFs) and the pyrolytic conditions. The acrylate groups play important roles on improving the polymerization degree of organic frameworks and generating and stabilizing highly dispersed and accessible Cu/Cu2O heteronanojunctions. As a result, pyrolysis of the MOF ZJU‐199, consisting of three acrylates per ligand, generates abundant heterostructural Cu/Cu2O discrete domains inside porous organic matrices at 350 °C, demonstrating excellent catalytic properties in liquid‐phase hydrogenation of furfural into furfuryl alcohol, which are much superior to the non‐noble metal‐based catalysts.  相似文献   

9.
MIL‐101(Cr) is an excellent metal–organic framework with high surface area and nanoscale cavities, making it promising in solid‐phase extraction. Herein, we used MIL‐101(Cr) as a solid‐phase extraction packing material combined with fast detection of direct analysis in real time mass spectrometry (DART‐MS) for the analysis of triazine herbicides. After systematic optimization of the operation parameters, including the gas temperature of DART, the moving speed of the 1D platform, solvent for desorption, amount of MIL‐101(Cr) extraction time, eluent volume and salt concentration, this method can realize the simultaneous detection of five kinds of triazine herbicides. The limits of detection were 0.1~0.2 ng/mL and the linear ranges covered more than two orders of magnitude with the quantitation limits of 0.5~1 ng/mL. Moreover, the developed method has been applied for the analysis of lake water samples and the recoveries for spiked analytes were in the range of 85~110%. These results showed that solid‐phase extraction with metal–organic frameworks is an efficient sample preparation approach for DART‐MS analysis and could find more applications in environmental analysis.  相似文献   

10.
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65.  相似文献   

11.
Four different miniaturized methodologies were developed and applied to the analysis of 11 UV filters in sand samples. These approaches were based on ultrasound and vortex extractions, on‐column lixiviation, and ultrasound extraction followed by solid‐phase microextraction. Gas chromatography with tandem mass spectrometry was used for quantitative analysis. The analytical performance provided by the four methods was evaluated in terms of linearity, accuracy, precision, and limits of quantification. Lixiviation was discarded since it provided the lowest recoveries and the highest limits of quantification. In contrast, ultrasound and vortex extractions, and ultrasound extraction followed by solid‐phase microextraction were suitable, with recoveries in general >85% and limits of quantification at the low ng/g level. Moreover, ultrasound extraction followed by solid‐phase microextraction allowed using external calibration with aqueous standards and it provided higher sensitivity, with limits of quantification in general one order of magnitude lower than those achieved with the other techniques. The methodologies were applied for the analysis of four marine sand samples, and the results were statistically compared performing an analysis of variance. Eight out of the eleven target UV filters were detected. Octocrylene was found at very high concentrations (up to 1000 ng/g) followed by ethylhexyl salicylate, 4‐methylbenzylidene camphor, homosalate, and 2‐ethylhexyl methoxycinnamate.  相似文献   

12.
Sample preparation is a critical step in forensic analytical toxicology. Different extraction techniques are employed with the goals of removing interferences from the biological samples, such as blood, tissues and hair, reducing matrix effects and concentrating the target analytes, among others. With the objective of developing faster and more ecological procedures, microextraction techniques have been expanding their applications in the recent years. This article reviews various microextraction methods, which include solid‐based microextraction, such as solid‐phase microextraction, microextraction by packed sorbent and stir‐bar sorptive extraction, and liquid‐based microextraction, such as single drop/hollow fiber‐based liquid‐phase microextraction and dispersive liquid–liquid microextraction, as well as their applications to forensic toxicology analysis. The development trend in future microextraction sample preparation is discussed.  相似文献   

13.
Two different modes of three‐phase hollow fiber liquid‐phase microextraction were studied for the extraction of two herbicides, bensulfuron‐methyl and linuron. In these two modes, the acceptor phases in the lumen of the hollow fiber were aqueous and organic solvents. The extraction and determination were performed using an automated hollow fiber microextraction instrument followed by high‐performance liquid chromatography. For both three‐phase hollow fiber liquid‐phase microextraction modes, the effect of the main parameters on the extraction efficiency were investigated and optimized by central composite design. Under optimal conditions, both modes showed good linearity and repeatability, but the three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents has a better extraction efficiency and figures of merit. The calibration curves for three‐phase hollow fiber liquid‐phase microextraction with an organic acceptor phase were linear in the range of 0.3–200 and 0.1–150 μg/L and the limits of detection were 0.1 and 0.06 μg/L for bensulfuron‐methyl and linuron, respectively. For the conventional three‐phase hollow fiber liquid‐phase microextraction, the calibration curves were linear in the range of 3.0–250 and 15–400 μg/L and LODs were 1.0 and 5.0 μg/L for bensulfuron‐methyl and linuron, respectively. The real sample analysis was carried out by three‐phase hollow fiber liquid phase microextraction based on two immiscible organic solvents because of its more favorable characteristics.  相似文献   

14.
A simple, rapid, efficient, and environmentally friendly pretreatment based on a low‐density solvent based dispersive liquid–liquid microextraction was developed for determining trace levels of 17 organochlorine pesticides in snow. The parameters affecting the extraction efficiency, such as the type and volume of the extraction and dispersive solvents, extraction time, and salt content, were optimized. The optimized conditions yielded a good performance, with enrichment factors ranging from 271 to 474 and recoveries ranging from 71.4 to 114.5% and relative standard deviations between 1.6 and 14.8%. The detection limits, calculated as three times the signal‐to‐noise ratio, ranged from 0.02 to 0.11 μg/L. The validated method was used to successfully analyze 17 analytes in snow water samples, overcoming the drawbacks of some existing low‐density solvent liquid microextraction methods, which require special devices, large volumes of organic solvents, or complicated operation procedures.  相似文献   

15.
Dispersive liquid–liquid microextraction method was developed for the determination of the amount of phthalate esters in bottled drinking water samples and dispersive liquid–liquid microextraction samples were analyzed by GC–MS. Various experimental conditions influencing the extraction were optimized. Under the optimized conditions, very good linearity was observed for all analytes in a range between 0.05 and 150 μg/L with coefficient of determination (R2) between 0.995 and 0.999. The LODs based on S/N = 3 were 0.005–0.22 μg/L. The reproducibility of dispersive liquid–liquid microextraction was evaluated. The RSDs were 1.3–5.2% (n = 3). The concentrations of phthalates were determined in bottled samples available in half shell. To understand the leaching profile of these phthalates from bottled water, bottles were exposed to direct sunlight during summer (temperature from 34–57°C) and sampled at different intervals. Result showed that the proposed dispersive liquid–liquid microextraction is suitable for rapid determination of phthalates in bottled water and di‐n‐butyl, butyl benzyl, and bis‐2‐ethylhexyl phthalate compounds leaching from bottles up to 36 h. Thereafter, degradation of phthalates was observed.  相似文献   

16.
A new class of chelating polymers using Amberlite XAD-16 (AXAD-16) modified with (N-(3,4-dihydroxy)benzyl)-4-amino,3-hydroxynapthalene-1-sulphonic acid has been developed based on dual mechanism bifunctional polymers, for the extraction of transition and post-transition metal ions. The optimum pH conditions for the quantitative sorption of metal ions were studied. The developed method showed superior extraction qualities with high metal loading capacities of 71, 85, 182, 130 and 46 mg g−1 for Ni(II), Cd(II), Pb(II), Cu(II) and Co(II), respectively. The rate of metal ion uptake i.e. kinetics studies performed under optimum levels showed a time duration of <5 min except for Co(II) which required 20 min, for complete metal ion saturation. Desorption of metal ions were effective with 15 ml of 2 M HCl/HNO3 prior to detection using flame atomic absorption spectrophotometer. The chelating polymer was highly ion-selective in nature even in the presence of large concentrations of alkali and alkaline earth metal ions, with a high preconcentrating ability for the metal ions of interest. The developed chelating matrix was tested on its utility with synthetic and real samples like river/sea/tap/well water samples and also with multivitamin/mineral tablets, showed R.S.D. values of <2.5% reflecting on the accuracy and reproducibility of data using the newly developed resin matrix.  相似文献   

17.
A novel magnetic mesoporous silica material was synthesized and used as the sorbent for the magnetic solid‐phase microextraction of diazinon and malathion before their quantification by high‐performance liquid chromatography with UV detection. The sorbent was synthesized by a surfactant‐templated one‐pot sol–gel procedure using SiO2‐coated Fe3O4 as the magnetic support, cetyltrimethylammonium bromide as the template and tetraethyl orthosilicate as the silicon source. The characteristics of the prepared sorbent were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, and X‐ray diffraction. The sorbent exhibited a high maximum adsorption capacity of 19.2 and 9.4 mg/g for diazinon and malathion, respectively. The parameters affecting the microextraction were optimized by the MultiSimplex method. Under the optimized conditions, the calibration graphs were linear in the concentration ranges of 0.3–50.0 and 0.5–50 μg/L with the limits of detection of 0.09 and 0.14 μg/L for diazinon and malathion, respectively. The relative standard deviations (n = 5) at a concentration level of 10.0 μg/L of analytes were less than 2.5 and 4% for intra and interday, respectively. The developed method was successfully used for the determination of diazinon and malathion in apple, tomato, cucumber, tap water, and well water samples.  相似文献   

18.
Two extraction procedures, matrix solid‐phase dispersion and hollow fiber liquid‐phase microextraction, were combined and applied to determine triazine herbicides in peanut samples. The results showed that the established method has high extraction efficiency and could greatly eliminate the interferences from complex matrix samples. A series of important experimental parameters were all investigated in detail. Under the optimal conditions, the developed method has the limits of detection for triazine herbicides in the range of 0.05 to 1.71 μg/kg. Moreover, it has the recovery in the range of 80.4–120.0% with relative standard deviations of equal or lower than 8.9%. The established method may have a great potential in separation, enrichment, and purification of triazines from complex fatty solid samples.  相似文献   

19.
A new type of liquid‐phase microextraction based on two immiscible organic solvents was optimized and validated for the quantification of lidocaine, ketamine, and cocaine in human urine samples. A hollow‐fiber based microextraction technique followed by gas chromatography coupled with mass spectrometry detection was used to reduce matrix interferences and improve limits of detection. The analytes were extracted from aqueous sample with pH 11.0, into a thin layer of organic solvent (n‐dodecane) sustained in the pores of a hollow fiber, and then into a second organic acceptor (acetonitrile) located inside the lumen of the hollow fiber. With the application of optimized values, good linearity was obtained in the range of 1–500 μg/L for lidocaine and ketamine and 2–500 μg/L for cocaine with the determination coefficient values (r2) >0.9943. The preconcentration factors and limits of detection (S/N > 3) were 250–350 and 0.01–0.05 μg/L, respectively. Intra and interassay precision values were <7.3 and 9.3%, respectively. The method was successfully applied for the determination and quantification of target analytes in human urine samples.  相似文献   

20.
In‐syringe solid‐phase extraction is a promising sample pretreatment method for the on‐site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in‐syringe solid‐phase extraction device using metal–organic frameworks as the adsorbent was fabricated for the on‐site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self‐made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal–organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self‐made device for on‐site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal–organic frameworks in sample preparation and demonstrate the great potential of in‐syringe solid‐phase extraction for the on‐site sampling of trace contaminants in environmental waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号