首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The understanding of biomolecular function is coupled to knowledge about the structure and dynamics of these biomolecules, preferably acquired under native conditions. In this regard, pulsed dipolar EPR spectroscopy (PDS) in conjunction with site-directed spin labeling (SDSL) is an important method in the toolbox of biophysical chemistry. However, the currently available spin labels have diverse deficiencies for in-cell applications, for example, low radical stability or long bioconjugation linkers. In this work, a synthesis strategy is introduced for the derivatization of trityl radicals with a maleimide-functionalized methylene group. The resulting trityl spin label, called SLIM, yields narrow distance distributions, enables highly sensitive distance measurements down to concentrations of 90 nm , and shows high stability against reduction. Using this label, the guanine-nucleotide dissociation inhibitor (GDI) domain of Yersinia outer protein O (YopO) is shown to change its conformation within eukaryotic cells.  相似文献   

2.
Structure determination of biomacromolecules under in‐cell conditions is a relevant yet challenging task. Electron paramagnetic resonance (EPR) distance measurements in combination with site‐directed spin labeling (SDSL) are a valuable tool in this endeavor but the usually used nitroxide spin labels are not well‐suited for in‐cell measurements. In contrast, triarylmethyl (trityl) radicals are highly persistent, exhibit a long relaxation time and a narrow spectral width. Here, the synthesis of a versatile collection of trityl spin labels and their application in in vitro and in‐cell trityl–iron distance measurements on a cytochrome P450 protein are described. The trityl labels show similar labeling efficiencies and better signal‐to‐noise ratios (SNR) as compared to the popular methanethiosulfonate spin label (MTSSL) and enabled a successful in‐cell measurement.  相似文献   

3.
New spin labeling strategies have immense potential in studying protein structure and dynamics under physiological conditions with electron paramagnetic resonance (EPR) spectroscopy. Here, a new spin‐labeled chemical recognition unit for switchable and concomitantly high affinity binding to His‐tagged proteins was synthesized. In combination with an orthogonal site‐directed spin label, this novel spin probe, Proxyl‐trisNTA (P‐trisNTA) allows the extraction of structural constraints within proteins and macromolecular complexes by EPR. By using the multisubunit maltose import system of E. coli: 1) the topology of the substrate‐binding protein, 2) its substrate‐dependent conformational change, and 3) the formation of the membrane multiprotein complex can be extracted. Notably, the same distance information was retrieved both in vitro and in situ allowing for site‐specific spin labeling in cell lysates under in‐cell conditions. This approach will open new avenues towards in‐cell EPR.  相似文献   

4.
Carboxy‐substituted trityl (triarylmethyl) radicals are valuable in vivo probes because of their stability, narrow lines, and sensitivity of their spectroscopic properties to oxygen. Amino‐substituted trityl radicals have the potential to monitor pH in vivo, and the suitability for this application depends on spectral properties. Electron spin relaxation times T1 and T2 were measured at X‐band for the protonated and deprotonated forms of two amino‐substituted triarylmethyl radicals. Comparison with relaxation times for carboxy‐substituted triarylmethyl radicals shows that T1 exhibits little dependence on protonation or the nature of the substituent, which makes it useful for measuring O2 concentration, independent of pH. Insensitivity of T1 to changes in substituents is consistent with the assignment of the dominant contribution to spin lattice relaxation as a local mode that involves primarily atoms in the carbon and sulfur core. Values of T2 vary substantially with pH and the nature of the aryl group substituent, reflecting a range of dynamic processes. The narrow spectral widths for the amino‐substituted triarylmethyl radicals facilitate spectral‐spatial rapid scan electron paramagnetic resonance imaging, which was demonstrated with a phantom. The dependence of hyperfine splittings patterns on pH is revealed in spectral slices through the image. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The development of ESR methods that measure long‐range distance distributions has advanced biophysical research. However, the spin labels commonly employed are highly flexible, which leads to ambiguity in relating ESR measurements to protein‐backbone structure. Herein we present the double‐histidine (dHis) Cu2+‐binding motif as a rigid spin probe for double electron–electron resonance (DEER) distance measurements. The spin label is assembled in situ from natural amino acid residues and a metal salt, requires no postexpression synthetic modification, and provides distance distributions that are dramatically narrower than those found with the commonly used protein spin label. Simple molecular modeling based on an X‐ray crystal structure of an unlabeled protein led to a predicted most probable distance within 0.5 Å of the experimental value. Cu2+ DEER with the dHis motif shows great promise for the resolution of precise, unambiguous distance constraints that relate directly to protein‐backbone structure and flexibility.  相似文献   

6.
The development of ESR methods that measure long‐range distance distributions has advanced biophysical research. However, the spin labels commonly employed are highly flexible, which leads to ambiguity in relating ESR measurements to protein‐backbone structure. Herein we present the double‐histidine (dHis) Cu2+‐binding motif as a rigid spin probe for double electron–electron resonance (DEER) distance measurements. The spin label is assembled in situ from natural amino acid residues and a metal salt, requires no postexpression synthetic modification, and provides distance distributions that are dramatically narrower than those found with the commonly used protein spin label. Simple molecular modeling based on an X‐ray crystal structure of an unlabeled protein led to a predicted most probable distance within 0.5 Å of the experimental value. Cu2+ DEER with the dHis motif shows great promise for the resolution of precise, unambiguous distance constraints that relate directly to protein‐backbone structure and flexibility.  相似文献   

7.
We present a novel pulsed electron paramagnetic resonance (EPR) spectroscopic ruler to test the performance of a recently developed spin‐labeling method based on the photoexcited triplet state (S=1). Four‐pulse electron double resonance (PELDOR) experiments are carried out on a series of helical peptides, labeled at the N‐terminal end with the porphyrin moiety, which can be excited to the triplet state, and with the nitroxide at various sequence positions, spanning distances in the range 1.8–8 nm. The PELDOR traces provide accurate distance measurements for all the ruler series, showing deep envelope modulations at frequencies varying in a progressive way according to the increasing distance between the spin labels. The upper limit is evaluated and found to be around 8 nm. The PELDOR‐derived distances are in excellent agreement with theoretical predictions. We demonstrate that high sensitivity is acquired using the triplet state as a spin label by comparison with Cu(II)–porphyrin analogues. The new labeling approach has a high potential for measuring nanometer distances in more complex biological systems due to the properties of the porphyrin triplet state.  相似文献   

8.
9.
In situ investigation of membrane proteins is a challenging task. Previously we demonstrated that nitroxide labels combined with pulsed ESR spectroscopy is a promising tool for this purpose. However, the nitroxide labels suffer from poor stability, high background labeling, and low sensitivity. Here we show that Finland (FTAM) and OX063 based labels enable labeling of the cobalamin transporter BtuB and BamA, the central component of the β-barrel assembly machinery (BAM) complex, in E coli. Compared to the methanethiosulfonate spin label (MTSL), trityl labels eliminated the background signals and enabled specific in situ labeling of the proteins with high efficiency. The OX063 labels show a long phase memory time (TM) of ≈5 μs. All the trityls enabled distance measurements between BtuB and an orthogonally labeled substrate with high selectivity and sensitivity down to a few μm concentration. Our data corroborate the BtuB and BamA conformations in the cellular environment of E. coli.  相似文献   

10.
The cellular environment of proteins differs considerably from in vitro conditions under which most studies of protein structures are carried out. Therefore, there is a growing interest in determining dynamics and structures of proteins in the cell. A key factor for in‐cell distance measurements by the double electron–electron resonance (DEER) method in proteins is the nature of the used spin label. Here we present a newly designed GdIII spin label, a thiol‐specific DOTA‐derivative (DO3MA‐3BrPy), which features chemical stability and kinetic inertness, high efficiency in protein labelling, a short rigid tether, as well as favorable spectroscopic properties, all are particularly suitable for in‐cell distance measurements by the DEER method carried out at W‐band frequencies. The high performance of DO3MA‐3BrPy‐GdIII is demonstrated on doubly labelled ubiquitin D39C/E64C, both in vitro and in HeLa cells. High‐quality DEER data could be obtained in HeLa cells up to 12 h after protein delivery at in‐cell protein concentrations as low as 5–10 μm .  相似文献   

11.
The cellular environment of proteins differs considerably from in vitro conditions under which most studies of protein structures are carried out. Therefore, there is a growing interest in determining dynamics and structures of proteins in the cell. A key factor for in‐cell distance measurements by the double electron–electron resonance (DEER) method in proteins is the nature of the used spin label. Here we present a newly designed GdIII spin label, a thiol‐specific DOTA‐derivative (DO3MA‐3BrPy), which features chemical stability and kinetic inertness, high efficiency in protein labelling, a short rigid tether, as well as favorable spectroscopic properties, all are particularly suitable for in‐cell distance measurements by the DEER method carried out at W‐band frequencies. The high performance of DO3MA‐3BrPy‐GdIII is demonstrated on doubly labelled ubiquitin D39C/E64C, both in vitro and in HeLa cells. High‐quality DEER data could be obtained in HeLa cells up to 12 h after protein delivery at in‐cell protein concentrations as low as 5–10 μm .  相似文献   

12.
Nucleobase‐directed spin‐labeling by the azide‐alkyne ‘click’ (CuAAC) reaction has been performed for the first time with oligonucleotides. 7‐Deaza‐7‐ethynyl‐2′‐deoxyadenosine ( 1 ) and 5‐ethynyl‐2′‐deoxyuridine ( 2 ) were chosen to incorporate terminal triple bonds into DNA. Oligonucleotides containing 1 or 2 were synthesized on a solid phase and spin labeling with 4‐azido‐2,2,6,6‐tetramethylpiperidine 1‐oxyl (4‐azido‐TEMPO, 3 ) was performed by post‐modification in solution. Two spin labels ( 3 ) were incorporated with high efficiency into the DNA duplex at spatially separated positions or into a ‘dA‐dT’ base pair. Modification at the 5‐position of the pyrimidine base or at the 7‐position of the 7‐deazapurine residue gave steric freedom to the spin label in the major groove of duplex DNA. By applying cw and pulse EPR spectroscopy, very accurate distances between spin labels, within the range of 1–2 nm, were measured. The spin–spin distance was 1.8±0.2 nm for DNA duplex 17 ( dA*7,10 ) ?11 containing two spin labels that are separated by two nucleotides within one individual strand. A distance of 1.4±0.2 nm was found for the spin‐labeled ‘dA‐dT’ base pair 15 ( dA*7 ) ?16 ( dT*6 ). The ‘click’ approach has the potential to be applied to all four constituents of DNA, which indicates the universal applicability of the method. New insights into the structural changes of canonical or modified DNA are expected to provide additional information on novel DNA structures, protein interaction, DNA architecture, and synthetic biology.  相似文献   

13.
Trityl radicals (TAMs) have recently appeared as an alternative source of spin labels for measuring long distances in biological systems. Finland trityl radical (FTAM) served as the basis for this new generation of spin labels, but FTAM is rather lipophilic and susceptible to self-aggregation, noncovalent binding with lipophilic sites of proteins, and noncovalent docking at the termini of duplex DNA. In this paper the very hydrophilic OX063 TAM with very low toxicity and little tendency for aggregation is used as the basis for a spin label. Human serum albumin (HSA) labeled with OX063 has an intense narrow line typical of TAM radicals in solution, whereas HSA labeled with FTAM shows broad lines and extensive aggregation. In pulse EPR measurements, the measured phase memory time TM for HSA labeled with OX063 is 6.3 μs at 50 K, the longest yet obtained with a TAM-based spin label. The lowered lipophilicity also decreases side products in the labeling reaction.  相似文献   

14.
Thymidine dimers in which the natural phosphodiester linkage has been replaced by a 2,5‐disubstituted tetrazole ring are synthesized and incorporated into oligodeoxynucleotides (ODNs). The synthesis is accomplished by two strategies based on an alkylation of 5′‐O‐trityl‐on and 5′‐O‐trityl‐off 3′‐deoxy‐3′‐(1H‐tetrazol‐5‐yl)thymidines with 5′‐iodo‐5′‐deoxythymidine in the presence of Et3N, and the formation of only 2‐substituted tetrazol‐5‐yl linkages is observed in 89 and 46% yields, respectively. The nucleoside dimer formed is reacted with 4,4′‐dimethoxytrityl chloride (DMTCl), followed by treatment with 2‐cyanoethyl tetraisopropylphosphordiamidite in the presence of N,N‐diisopropylammonium tetrazolide, to afford the 5′‐O‐DMT‐protected dinucleoside phosphoramidite that is used for incorporation into ODNs on an automated DNA synthesizer. The modified ODNs with one and up to five tetrazole internucleosidic linkages are obtained in good yields. The thermal stability of DNA/DNA and DNA/RNA duplexes is studied by UV experiments and reported also.  相似文献   

15.
Novel stable high spin molecules possessing three different arranged fashions are designed with –·N–N< as a spin‐containing (SC) fragment, various aromatic, such as benzene ( 1 ), pyridine ( 2 ), pyridazine ( 3 ), pyrimidine ( 4 ), pyrazine ( 5 ), triazine ( 6 ) as end groups (EG) and phenyl as a ferromagnetic coupling (FC) unit. The effects of a different end groups on the spin multiplicities of the ground states and their stabilities were investigated by means of AM1‐CI approach. It has been found that the spin densities on the two atoms of the SC fragment are different from delocalization resulting in the specific stability of –·N–N<. In these molecules, the stabilities of the triplet states decrease when the distance between the atoms of central SC (–N–) increases. The orders of the stability of triplet states for 1an , 1bn , 1cn [They are isomers in which SC is connected with FC in different way ( 1an , N1NNN1; 1bn , N1N N1N; 1cn , NN1N1N) and six heterocycles are EG] show that the stability of triplet states with heterocycles as end groups is higher than that with phenyl as end groups, and in the order:triazine (EG)>pyrimidine, pyrazine>pyridine, pyridazine.  相似文献   

16.
Site‐directed spin labeling of RNA based on click chemistry is used in combination with pulsed electron‐electron double resonance (PELDOR) to benchmark a nitroxide spin label, called here d? . We compare this approach with another established method that employs the rigid spin label Çm for RNA labeling. By using CD spectroscopy, thermal denaturation measurements, CW‐EPR as well as PELDOR we analyzed and compared the influence of d? and Çm on a self‐complementary RNA duplex. Our results demonstrate that the conformational diversity of d? is significantly reduced near the freezing temperature of a phosphate buffer, resulting in strongly orientation‐selective PELDOR time traces of the d? ‐labeled RNA duplex.  相似文献   

17.
Three structurally related isoindoline‐derived spin labels that have different mobilities were incorporated into duplex DNA to systematically study the effect of motion on orientation‐dependent pulsed electron–electron double resonance (PELDOR) measurements. To that end, a new nitroxide spin label, ExIm U , was synthesized and incorporated into DNA oligonucleotides. ExIm U is the first example of a conformationally unambiguous spin label for nucleic acids, in which the nitroxide N?O bond lies on the same axis as the three single bonds used to attach the otherwise rigid isoindoline‐based spin label to a uridine base. Continuous‐wave (CW) EPR measurements of ExIm U confirm a very high rotational mobility of the spin label in duplex DNA relative to the structurally related spin label Im U , which has restricted mobility due to an intramolecular hydrogen bond. The X‐band CW‐EPR spectra of ExIm U can be used to identify mismatches in duplex DNA. PELDOR distance measurements between pairs of the spin labels Im U , Ox U , and ExIm U in duplex DNA showed a strong angular dependence for Im U , a medium dependence for Ox U , and no orientation effect for ExIm U . Thus, precise distances can be extracted from ExIm U without having to take orientational effects into account.  相似文献   

18.
Three new polymerizable diols, based on mono‐, di‐, and tri‐O‐allyl‐L ‐arabinitol derivatives, were prepared from L ‐arabinitol as versatile materials for the preparation of tailor‐made polyurethanes with varied degrees of functionalization. Their allyl functional groups can take part in thiol‐ene reactions, to obtain greatly diverse materials. This “click” reaction with 2‐mercaptoethanol was firstly studied on the highly hindered sugar precursor 2,3,4‐tri‐O‐allyl‐1,5‐di‐O‐trityl‐L ‐arabinitol, to apply it later to macromolecules. A polyurethane with multiple pendant allyl groups was synthesized by polyaddition reaction of 2,3,4‐tri‐O‐allyl‐L ‐arabinitol with 1,6‐hexamethylene diisocyanate, and then functionalized by thiol‐ene reaction. The coupling reaction took place in every allyl group, as confirmed by standard techniques. The thermal stability of the novel polyurethanes was investigated by thermogravimetric analysis and differential scanning calorimetry (DSC). This strategy provides a simple and versatile platform for the design of new materials whose functionality can be easily modified. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
A benzene‐1,3,5‐triaminyl radical fused with three ZnII‐porphyrins was synthesized through a three‐fold oxidative fusion reaction of 1,3,5‐tris(ZnII‐porphyrinylamino)benzene followed by oxidation with PbO2 as key steps. This triaminyl radical has been shown to possess a quartet ground state with a doublet–quartet energy gap of 3.1 kJ mol?1 by superconducting quantum interference device (SQUID) studies. Despite its high‐spin nature, this triradical is remarkably stable, which allows its separation and recrystallization under ambient conditions. Moreover, this triradical can be stored as a solid for more than one year without serious deterioration. The high stability of the triradical is attributed to effective spin delocalization over the porphyrin segments and steric protection at the nitrogen centers and the porphyrin meso positions.  相似文献   

20.
We reported a novel strategy for investigating small molecule binding to G‐quadruplexes (GQs). A newly synthesized dinuclear platinum(II) complex (Pt2L) containing a nitroxide radical was shown to selectively bind a GQ‐forming sequence derived from human telomere (hTel). Using the nitroxide moiety as a spin label, electron paramagnetic resonance (EPR) spectroscopy was carried out to investigate binding between Pt2L and hTel GQ. Measurements indicated that two molecules of Pt2L bind with one molecule of hTel GQ. The inter‐spin distance measured between the two bound Pt2L, together with molecular docking analyses, revealed that Pt2L predominately binds to the neighboring narrow and wide grooves of the G‐tetrads as hTel adopts the antiparallel conformation. The design and synthesis of nitroxide tagged GQ binders, and the use of spin‐labeling/EPR to investigate their interactions with GQs, will aid the development of small molecules for manipulating GQs involved in crucial biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号